cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199086 T(n,k) = Number of partitions of n+2k-2 into parts >= k.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 2, 5, 1, 2, 2, 4, 7, 1, 2, 2, 3, 4, 11, 1, 2, 2, 3, 4, 7, 15, 1, 2, 2, 3, 3, 5, 8, 22, 1, 2, 2, 3, 3, 5, 6, 12, 30, 1, 2, 2, 3, 3, 4, 5, 9, 14, 42, 1, 2, 2, 3, 3, 4, 5, 7, 10, 21, 56, 1, 2, 2, 3, 3, 4, 4, 6, 8, 13, 24, 77, 1, 2, 2, 3, 3, 4, 4, 6, 7, 11, 17, 34, 101, 1, 2, 2, 3, 3, 4, 4, 5
Offset: 1

Views

Author

R. H. Hardin, Nov 06 2011

Keywords

Comments

Row n goes to floor(n/2)+1
Table starts
...1...1...1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1
...2...2...2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2
...3...2...2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2..2
...5...4...3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3
...7...4...4..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3..3
..11...7...5..5..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4
..15...8...6..5..5..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4..4
..22..12...9..7..6..6..5..5..5..5..5..5..5..5..5..5..5..5..5..5..5..5..5..5..5
..30..14..10..8..7..6..6..5..5..5..5..5..5..5..5..5..5..5..5..5..5..5..5..5..5
..42..21..13.11..9..8..7..7..6..6..6..6..6..6..6..6..6..6..6..6..6..6..6..6..6
..56..24..17.12.10..9..8..7..7..6..6..6..6..6..6..6..6..6..6..6..6..6..6..6..6
..77..34..21.16.13.11.10..9..8..8..7..7..7..7..7..7..7..7..7..7..7..7..7..7..7
.101..41..25.18.15.12.11.10..9..8..8..7..7..7..7..7..7..7..7..7..7..7..7..7..7
.135..55..33.24.18.16.13.12.11.10..9..9..8..8..8..8..8..8..8..8..8..8..8..8..8
.176..66..39.27.21.17.15.13.12.11.10..9..9..8..8..8..8..8..8..8..8..8..8..8..8
.231..88..49.34.26.21.18.16.14.13.12.11.10.10..9..9..9..9..9..9..9..9..9..9..9
.297.105..60.39.30.24.20.17.16.14.13.12.11.10.10..9..9..9..9..9..9..9..9..9..9
.385.137..73.50.36.29.24.21.18.17.15.14.13.12.11.11.10.10.10.10.10.10.10.10.10
.490.165..88.57.42.32.27.23.20.18.17.15.14.13.12.11.11.10.10.10.10.10.10.10.10
.627.210.110.70.50.40.32.27.24.21.19.18.16.15.14.13.12.12.11.11.11.11.11.11.11

Examples

			All solutions for n=5, k=3: 3+3+3, 3+6, 4+5, 9.
		

Crossrefs

Column 1 is A000041
Column 2 is A002865(n+2)
Column 3 is A008483(n+4)
Column 4 is A008484(n+6)
Column 5 is A026798(n+13)
Column 6 is A026799(n+16)
Column 7 is A026800(n+19)
Column 8 is A026801(n+22)
Column 9 is A026802(n+25)
Column 10 is A026803(n+28)

Programs

  • Maple
    b:= proc(n, i) option remember;
          if n<0 then 0
        elif n=0 then 1
        elif i>n then 0
        else b(n-i, i) +b(n, i+1)
          fi
        end:
    T:= (n, k)-> b(n+2*k-2, k):
    seq(seq(T(n, d+1-n), n=1..d), d=1..20); # Alois P. Heinz, Nov 06 2011
  • Mathematica
    b[n_, i_] := b[n, i] = Which[n < 0, 0, n == 0, 1, i > n, 0, True, b[n - i, i] + b[n, i + 1]]; T[n_, k_] := b[n + 2*k - 2, k]; Table[Table[T[n, d + 1 - n], {n, 1, d}], {d, 1, 20}] // Flatten (* Jean-François Alcover, Jan 23 2016, after Alois P. Heinz *)

Formula

G.f. of column k: x^(2-2*k) * Product_{j>=k} 1/(1-x^j). - Alois P. Heinz, Nov 06 2011