cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A003666 a(n) is smallest number which is uniquely of the form a(j) + a(k) with 1 <= j < k < n and a(1) = 1, a(2) = 4.

Original entry on oeis.org

1, 4, 5, 6, 7, 8, 10, 16, 18, 19, 21, 31, 32, 33, 42, 46, 56, 57, 66, 70, 79, 82, 91, 96, 104, 105, 107, 116, 129, 130, 131, 141, 158, 165, 168, 179, 180, 182, 191, 204, 205, 206, 216, 217, 218, 219, 229, 230, 244, 256, 266, 267, 268, 281, 290, 315, 316, 317, 318, 328
Offset: 1

Views

Author

Keywords

Comments

An Ulam-type sequence - see A002858 for many further references, comments, etc. - T. D. Noe, Jan 21 2008

References

  • R. K. Guy, "s-Additive sequences", preprint, 1994.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a003666 n = a003666_list !! (n-1)
    a003666_list = 1 : 4 : ulam 2 4 a003666_list
    -- Function ulam as defined in A002858.
    -- Reinhard Zumkeller, Nov 03 2011
  • Mathematica
    Nest[Append[#, SelectFirst[Union@ Select[Tally@ Map[Total, Select[Permutations[#, {2}], #1 < #2 & @@ # &]], Last@ # == 1 &][[All, 1]], Function[k, FreeQ[#, k]]]] &, {1, 4}, 58] (* Michael De Vlieger, Nov 16 2017 *)

A199118 Number of partitions of n into terms of (1,3)-Ulam sequence, cf. A002859.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 7, 10, 13, 17, 21, 28, 34, 42, 52, 65, 78, 96, 113, 138, 165, 196, 231, 276, 322, 379, 442, 518, 600, 698, 803, 931, 1071, 1231, 1407, 1615, 1839, 2099, 2384, 2712, 3069, 3478, 3923, 4434, 4991, 5618, 6303, 7083, 7928, 8878, 9916, 11081
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 03 2011

Keywords

Examples

			The first terms of A002859 are 1, 3, 4, 5, 6, 8, 10, 12, 17, 21, ...
a(7) = #{6+1, 5+1+1, 4+3, 4+1+1+1, 3+3+1, 3+1+1+1+1, 7x1} = 7;
a(8) = #{8, 6+1+1, 5+3, 5+1+1+1, 4+4, 4+3+1, 4+1+1+1+1, 3+3+1+1, 3+1+1+1+1+1, 8x1} = 10.
		

Crossrefs

Programs

  • Haskell
    a199118 = p a002859_list where
       p _ 0 = 1
       p us'@(u:us) m | m < u     = 0
                      | otherwise = p us' (m - u) + p us m

A199121 Number of partitions of n into distinct terms of (1,4)-Ulam sequence, cf. A003666.

Original entry on oeis.org

1, 1, 0, 0, 1, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 5, 6, 6, 7, 8, 7, 8, 10, 11, 11, 12, 14, 14, 15, 17, 18, 20, 21, 22, 24, 25, 27, 30, 31, 32, 35, 37, 39, 41, 44, 45, 48, 52, 53, 56, 60, 62, 66, 69, 72, 76, 81, 86, 89, 92, 96, 103, 109, 113, 117, 123, 127, 134
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 03 2011

Keywords

Examples

			The first terms of A003666 are 1, 4, 5, 6, 7, 8, 10, 16, 18, 19, ...
a(12) = #{8+4, 7+5, 7+4+1, 6+5+1} = 4;
a(13) = #{8+5, 8+4+1, 7+6, 7+5+1} = 4;
a(14) = #{10+4, 8+6, 8+5+1, 7+6+1} = 4;
a(15) = #{10+5, 10+4+1, 8+7, 8+6+1, 6+5+4} = 5;
a(16) = #{16, 10+6, 10+5+1, 8+7+1, 7+5+4, 6+5+4+1} = 6.
		

Crossrefs

Programs

  • Haskell
    a199121 = p a003666_list where
       p _  0 = 1
       p (u:us) m | m < u =
                  | otherwise = p us (m - u) + p us m

A199122 Number of partitions of n into terms of (2,3)-Ulam sequence, cf. A001857.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 9, 11, 14, 16, 20, 23, 29, 33, 39, 47, 54, 64, 75, 86, 101, 117, 135, 155, 179, 204, 236, 268, 306, 349, 397, 450, 511, 577, 653, 736, 831, 934, 1050, 1179, 1322, 1478, 1657, 1848, 2065, 2302, 2562, 2852, 3172, 3518, 3909
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 03 2011

Keywords

Examples

			The first terms of A001857 are 2, 3, 5, 7, 8, 9, 13, 14, 18, 19, ...
a(10) = #{8+2, 7+3, 5+5, 5+3+2, 3+3+2+2, 2+2+2+2+2} = 6;
a(11) = #{9+2, 8+3, 7+2+2, 5+3+3, 5+2+2+2, 3+3+3+2, 3+2+2+2+2} = 7;
a(12) = #{9+3, 8+2+2, 7+5, 7+3+2, 5+5+2, 5+3+2+2, 3+3+3+3, 3+3+2+2+2, 6x2} = 9.
		

Crossrefs

Programs

  • Haskell
    a199122 = p a001857_list where
       p _ 0 = 1
       p us'@(u:us) m | m < u     = 0
                      | otherwise = p us' (m - u) + p us m
  • Mathematica
    nmax = 60;
    U = {2, 3};
    Do[AppendTo[U, k = Last[U]; While[k++; Length[DeleteCases[Intersection[U, k - U], k/2, 1, 1]] != 2]; k], {nmax}];
    a[n_] := IntegerPartitions[n, All, Select[U, # <= n &]] // Length;
    Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Oct 12 2021 *)

A199016 Number of partitions of n into terms of (1,2)-Ulam sequence, cf. A002858.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 10, 12, 18, 22, 30, 37, 50, 60, 78, 94, 120, 143, 179, 213, 262, 309, 376, 440, 531, 618, 737, 855, 1012, 1167, 1372, 1575, 1840, 2104, 2442, 2783, 3214, 3649, 4193, 4746, 5430, 6126, 6980, 7853, 8914, 10002, 11311, 12660, 14274, 15934
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 03 2011

Keywords

Examples

			The first terms of A002858 are 1, 2, 3, 4, 6, 8, 11, 13, 16, 18, ...
a(6) = #{6, 4+2, 4+1+1, 3+3, 3+2+1, 3+1+1+1, 2+2+2, 2+2+1+1, 2+1+1+1+1, 1+1+1+1+1+1} = 10;
a(7) = #{6+1, 4+3, 4+2+1, 4+1+1+1, 3+3+1, 3+2+2, 3+2+1+1, 3+1+1+1+1, 2+2+2+1, 2+2+1+1+1, 2+1+1+1+1+1, 1+1+1+1+1+1+1} = 12.
		

Crossrefs

Programs

  • Haskell
    199016 = p a002858_list where
       p _ 0 = 1
       p us'@(u:us) m | m < u     = 0
                      | otherwise = p us' (m - u) + p us m
Showing 1-5 of 5 results.