cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A286030 Irregular triangle T(n,k) read by rows: Let S be a 3-member set of integers {f,g,h} where f >= g >= h >= 0 and f+g+h = n. Let S(n,k) be an irregular triangle composed of all S listed in reverse lexicographic order by row n. Then T(n,k) = n!*Q/(3*f!*g!*h!), where Q is the number of permutations of S(n,k). (See "Comments" and "Examples" for additional explanation.)

Original entry on oeis.org

1, 1, 2, 1, 6, 2, 1, 8, 6, 12, 1, 10, 20, 20, 30, 1, 12, 30, 30, 20, 120, 30, 1, 14, 42, 42, 70, 210, 140, 210, 1, 16, 56, 56, 112, 336, 70, 560, 420, 560, 1, 18, 72, 72, 168, 504, 252, 1008, 756, 630, 2520, 560
Offset: 1

Views

Author

Bob Selcoe, Apr 30 2017

Keywords

Comments

See "Example" below for the starting construction of S(n,k) and T(n,k).
To understand S(n,k) and Q, consider example S(5,k), i.e., f+g+h = 5, and S(n,k) are listed in reverse lexicographic order. So S(5,k) = {5,0,0}, {4,1,0}, {3,2,0}, {3,1,1}, {2,2,1} k=1..5, respectively. Q is the number of permutations of S(n,k). So Q=3 when S(n,k) = {5,0,0}, {3,1,1} and {2,2,1}; and Q=6 when S(n,k) = {4,1,0} and {3,2,0}.
In general, by definition: Q=1 when all members of S(n,k) are equal, Q=3 when S(n,k) contains a pair, and Q=6 when none of the members of S(n,k) is equal.
Suppose three equally-matched players are playing a tournament of n games; and for each game there is one winner and two losers. Then S(n,k) is the "overall win record" (where player order does not matter) after n games. Let p be the probability that any S(n,k) occurs after n games. Then p = T(n,k)/3^(n-1). (See also "Example" section.)
Generally, when S(n,k) is a z-member set {f,g,h,i..,y}, then Q is the number of permutations of S(n,k), T(n,k) = n!*Q/(z*f!*g!*h!..*y!) and p = T(n,k)/z^(n-1). So when z=2 we get A008314. (Observation prompted by query from Linda Rogers.)
For triangle T(n,k):
Row sums are 3^(n-1).
Row lengths are A001399(n).
Final terms in each row are A199127(n).
For n >= 3: T(n,2) = 2*n.
For n >= 5: T(n,3) = T(n,4) = A002378(n-1) (oblong numbers).
For n >= 6: T(n,6) = A007531(n).
For n >= 8: T(n,9) = A033487(n-3).

Examples

			Triangle T(n,k) begins:
n/k 1    2    3    4    5   6    7     8    9    10    11    12    13    14
1:  1
2:  1,   2
3:  1,   6,   2
4:  1,   8,   6,  12
5:  1,  10,  20,  20,  30
6:  1,  12,  30,  30,  20, 120,  30
7:  1,  14,  42,  42,  70, 210, 140,  210
8:  1,  16,  56,  56, 112, 336,  70,  560,  420, 560
9:  1,  18,  72,  72, 168, 504, 252, 1008,  756, 630, 2520, 560
10: 1,  20,  90,  90, 240, 720, 420, 1680, 1260, 252, 2520, 5040, 3150, 4200
Triangle S(n,k) begins:
n/k    1        2        3        4        5        6        7
1:  {1,0,0}
2:  {2,0,0}  {1,1,0}
3:  {3,0,0}  {2,1,0}  {1,1,1}
4:  {4,0,0}  {3,1,0}  {2,2,0}  {2,1,1}
5:  {5,0,0}  {4,1,0}  {3,2,0}  {3,1,1}  {2,2,1}
6:  {6,0,0}  {5,1,0}  {4,2,0}  {4,1,1}  {3,3,0}  {3,2,1}  {2,2,2}
T(4,3) = 6 because n=4 and S(4,3) = {2,2,0}; so Q=3 and 3*4!/(3*2!*2!*0!) = 6. Therefore p = 6/27 = 2/9 that the overall win record = {2,2,0} after playing 4 tournament games.
		

Crossrefs

Cf. A000041 (partition numbers).
Showing 1-1 of 1 results.