cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A199127 Number of n X 2 0..2 arrays with values 0..2 introduced in row major order, the number of instances of each value within one of each other, and no element equal to any horizontal or vertical neighbor.

Original entry on oeis.org

1, 2, 2, 12, 30, 30, 210, 560, 560, 4200, 11550, 11550, 90090, 252252, 252252, 2018016, 5717712, 5717712, 46558512, 133024320, 133024320, 1097450640, 3155170590, 3155170590, 26293088250, 75957810500, 75957810500, 638045608200
Offset: 1

Views

Author

R. H. Hardin, Nov 03 2011

Keywords

Comments

Column 2 of A199133.
a(n) is the last term in row n of triangle in A286030 (see also formulas below). Bob Selcoe, Sep 26 2021

Examples

			Some solutions for n=5:
  0 1   0 1   0 1   0 1   0 1   0 1   0 1   0 1   0 1   0 1
  1 0   1 2   1 2   1 2   1 0   1 2   1 0   1 2   1 2   1 0
  0 2   2 0   0 1   2 0   0 2   2 1   0 2   0 1   2 0   2 1
  2 1   0 2   2 0   0 1   2 1   1 0   2 0   1 2   0 1   1 2
  0 2   2 1   0 2   2 0   1 2   0 2   1 2   2 0   1 2   2 0
		

Crossrefs

Cf. A286030.

Formula

Conjecture: a(3n+2) = a(3n+3) = A208881(n+1). - R. J. Mathar, Nov 01 2015
Conjecture: -(458*n-1205) *(n+2) *(n+1)*a(n) +(-208*n^3+2578*n^2-4613*n-2410) *a(n-1) +9*(-339*n-638) *a(n-2) +27*(n-2) *(458*n^2-289*n-1146) *a(n-3) +54*(n-2) *(n-3) *(104*n-1081) *a(n-4)=0. - R. J. Mathar, Nov 01 2015
Conjecture: (n+2)*(n+1)*a(n) +(5*n^2-2)*a(n-1) +3*(5*n^2-15*n+3) *a(n-2) +3*(n^2 -60*n +81)*a(n-3) +135*(-n^2+3*n-1)*a(n-4) -405*(n-2)*(n-4) *a(n-5) -810*(n-4) *(n-5) *a(n-6)=0. - R. J. Mathar, Nov 01 2015
From Bob Selcoe, Sep 26 2021: (Start)
When n == 0 (mod 3), a(n) = n!/(3*(n/3)!^3);
when n == 1 (mod 3), a(n) = n!/(((n+2)/3)!*((n-1)/3)!^2);
when n == 2 (mod 3), a(n) = n!/(((n-2)/3)!*((n+1)/3)!^2).
(End)
Showing 1-1 of 1 results.