A199167 Smallest number k such that the sum of the n-th powers of the divisors of k is divisible by n.
1, 3, 2, 15, 8, 12, 4, 105, 2, 3, 43, 60, 9, 12, 8, 945, 67, 300, 37, 240, 5, 48, 137, 420, 8, 5, 2, 60, 173, 12, 16, 10395, 86, 13, 76, 2100, 73, 147, 8, 1680, 163, 4800, 257, 240, 8, 3072, 281, 3780, 4, 3, 101, 60, 211, 14700, 8, 420, 32, 17, 353, 8400, 169
Offset: 1
Keywords
Examples
a(6) = 12 because the divisors of 12 are 1, 2, 3, 4, 6, 12 and 1^6 + 2^6 + 3^6 + 4^6 + 6^6 + 12^6 = 3037530 = 6*506255.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A066135.
Programs
-
Maple
with(numtheory): a:= proc(n) local k; for k while irem (add (d &^n mod n, d=divisors(k)), n)<>0 do od; k end: seq (a(n), n=1..63);
-
Mathematica
snk[n_]:=Module[{k=1},While[!Divisible[DivisorSigma[n,k],n],k++];k]; Array[ snk,70] (* Harvey P. Dale, Jun 07 2016 *)
-
PARI
a(n)=my(k);while(sigma(k++,n)%n,);k \\ Charles R Greathouse IV, Nov 03 2011