A199170 Decimal expansion of x<0 satisfying x^2+x*cos(x)=1.
1, 1, 9, 8, 3, 5, 9, 8, 4, 4, 5, 1, 8, 6, 6, 0, 2, 6, 8, 2, 6, 5, 0, 2, 1, 6, 0, 3, 4, 3, 0, 3, 0, 8, 9, 8, 9, 2, 7, 2, 6, 8, 0, 9, 3, 5, 8, 7, 4, 8, 2, 5, 6, 9, 0, 1, 4, 4, 4, 9, 2, 3, 8, 6, 8, 6, 4, 2, 7, 1, 7, 6, 1, 4, 9, 7, 1, 9, 1, 2, 5, 5, 9, 1, 7, 1, 4, 2, 8, 9, 1, 6, 9, 7, 2, 0, 9, 5, 4
Offset: 1
Examples
negative: -1.19835984451866026826502160343030898927268... positive: 0.685174133854503187895211530638458709591...
Programs
-
Mathematica
(* Program 1: A199170 and A199171 *) a = 1; b = 1; c = 1; f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c Plot[{f[x], g[x]}, {x, -2 Pi, 2 Pi}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -1.2, -1.1}, WorkingPrecision -> 110] RealDigits[r] (* A199170 *) r = x /. FindRoot[f[x] == g[x], {x, .68, .69}, WorkingPrecision -> 110] RealDigits[r] (* A199171 *) (* Program 2: implicit surface of x^2+u*x*cos(x)=v *) f[{x_, u_, v_}] := x^2 + u*x*Cos[x] - v; t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1}]}, {u, 0, 1.9}, {v, u, 600}]; ListPlot3D[Flatten[t, 1]] (* for A199170 *)
Comments