cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199302 Palindromic primes in the sense of A007500 with digits '0', '1' and '2' only.

Original entry on oeis.org

2, 11, 101, 1021, 1201, 110221, 111211, 112111, 120121, 121021, 122011, 1000211, 1010201, 1020101, 1022011, 1022201, 1101211, 1102111, 1102201, 1111021, 1112011, 1120001, 1120121, 1120211, 1121011, 1201021, 1201111, 1210211, 1212121, 1221221, 10002121
Offset: 1

Views

Author

M. F. Hasler, Nov 04 2011

Keywords

Comments

All terms except for the initial 2 start and end in the digit 1.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(10^8) | Set(Intseq(p)) subset [0..2] and IsPrime(Seqint(Reverse(Intseq(p))))];  // Bruno Berselli, Nov 07 2011
    
  • PARI
    allow=Vec("012");forprime(p=1,default(primelimit),setminus( Set( Vec(Str( p ))),allow)&next;isprime(A004086(p))&print1(p",")) /* better use the much more efficient code below */
    
  • PARI
    a(n=50,list=0,L=[0,1,2],needpal=1)={ for(d=1,1e9, u=vector(d,i,10^(d-i))~; forvec(v=vector(d,i,[1+(i==1&!L[1]),#L]), isprime(t=vector(d,i,L[v[i]])*u) || next; needpal & !isprime(A004086(t)) & next; list & print1(t","); n-- || return(t)))}  \\ M. F. Hasler, Nov 06 2011
    
  • Python
    from itertools import count, islice, product
    from sympy import isprime
    def A199302_gen(): return (n for n in (int(t+''.join(s)) for l in count(0) for t in '12' for s in product('012',repeat=l)) if isprime(n) and isprime(int(str(n)[::-1])))
    A199302_list = list(islice(A199302_gen(),20)) # Chai Wah Wu, Jan 04 2022