A199328 Palindromic primes in the sense of A007500 with digits '0', '1' and '8' only.
11, 101, 181, 1181, 1811, 18181, 108881, 110881, 118081, 180181, 180811, 181081, 188011, 188801, 1008001, 1088081, 1110881, 1180811, 1181881, 1808801, 1880111, 1880881, 1881811, 1881881, 10001081, 10001801, 10011101, 10080011, 10101181, 10111001, 10111081, 10180801, 10188811, 10808101, 10810001
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..10000 (First 4188 terms from Chai Wah Wu.)
Programs
-
Mathematica
Select[10#+1&/@FromDigits/@Tuples[{0,1,8},7],AllTrue[{#,IntegerReverse[#]},PrimeQ]&] (* Harvey P. Dale, Mar 28 2025 *)
-
PARI
a(n=50,L=[0,1,8],show=0)={my(t);for(d=1,1e9,u=vector(d,i,10^(d-i))~;forvec(v=vector(d,i,[1+(i==1&!L[1]),#L]),isprime(t=vector(d,i,L[v[i]])*u)||next;isprime(A004086(t))||next;show&print1(t",");n--||return(t)))}
-
Python
from itertools import product from sympy import isprime A199328_list = [n for n in (int(''.join(s)) for s in product('018',repeat=10)) if isprime(n) and isprime(int(str(n)[::-1]))] # Chai Wah Wu, Dec 17 2015