A199332 Triangle read by rows, where even numbered rows contain the nonsquares (cf. A000037) and odd rows contain replicated squares.
1, 2, 3, 4, 4, 4, 5, 6, 7, 8, 9, 9, 9, 9, 9, 10, 11, 12, 13, 14, 15, 16, 16, 16, 16, 16, 16, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 37, 38
Offset: 1
Examples
1: 1 1 2: 2 3 2 .. 3 3: 4 4 4 4 4: 5 6 7 8 5 .. 8 5: 9 9 9 9 9 9 6: 10 11 12 13 14 15 10 .. 15 7: 16 16 16 16 16 16 16 16 8: 17 18 19 20 21 22 23 24 17 .. 24 9: 25 25 25 25 25 25 25 25 25 25 .
References
- G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part Two, Chap. 1, sec. 2, Problem 19.2., page 51.
Links
- Reinhard Zumkeller, Rows n = 1..150 of triangle, flattened
- Eric Weisstein's World of Mathematics, Euler-Mascheroni Constant
- Wikipedia, Euler-Mascheroni constant
Programs
-
Haskell
a199332 n k = a199332_tabl !! (n-1) !! (k-1) a199332_row n = a199332_tabl !! (n-1) a199332_list = concat a199332_tabl a199332_tabl = f [1..] [1..] where f (x:xs) ys'@(y:ys) | odd x = (replicate x y) : f xs ys | even x = us : f xs vs where (us,vs) = splitAt x ys'
-
Mathematica
t[n_, k_] := If[OddQ[n], (n+1)^2/4, n^2/4 + k]; Flatten[ Table[ t[n, k], {n, 1, 12}, {k, 1, n}]](* Jean-François Alcover, Dec 05 2011 *) Flatten[Table[If[IntegerQ[Sqrt[n]],Table[n,{2*Sqrt[n]-1}],n],{n,40}]] (* Harvey P. Dale, Nov 11 2013 *)
Comments