cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199338 y-values in the solution to 15*x^2 - 14 = y^2.

Original entry on oeis.org

1, 11, 19, 89, 151, 701, 1189, 5519, 9361, 43451, 73699, 342089, 580231, 2693261, 4568149, 21203999, 35964961, 166938731, 283151539, 1314305849, 2229247351, 10347508061, 17550827269, 81465758639, 138177370801, 641378561051, 1087868139139, 5049562729769
Offset: 1

Views

Author

Sture Sjöstedt, Nov 08 2011

Keywords

Comments

When are both n+1 and 15*n+1 perfect squares? This problem gives the equation 15*x^2-14=y^2.
Essentially the same as A103201. - R. J. Mathar, Nov 11 2011

Crossrefs

Cf. A199336.

Programs

  • Magma
    m:=29; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1+x)*(1+10*x+x^2)/(1-8*x^2+x^4))); // Bruno Berselli, Nov 08 2011
  • Mathematica
    LinearRecurrence[{0, 8, 0, -1}, {1, 11, 19, 89}, 50]

Formula

a(n+4) = 8*a(n+2) - a(n) with a(1)=1, a(2)=11, a(3)=19, a(4)=89.
G.f.: x*(1+x)*(1+10*x+x^2)/(1-8*x^2+x^4). - Bruno Berselli, Nov 08 2011