cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199406 The number of inequivalent ways to color the edges of a cube using at most n colors.

Original entry on oeis.org

1, 144, 12111, 358120, 5131650, 45528756, 288936634, 1433251296, 5887880415, 20842168600, 65402344161, 185788177224, 485443851256, 1181242399260, 2703252560100, 5864398969216, 12138503871789, 24101498435616, 46112016365155, 85335258695400, 153249227870046
Offset: 1

Views

Author

Geoffrey Critzer, Nov 05 2011

Keywords

Comments

Two edge colorings are equivalent if one is the mirror image of the other or the cube can be picked up and rotated in any manner to obtain the other.
The group here has order 48 (compare A060530). - N. J. A. Sloane, Aug 14 2012
Also the number of unoriented colorings of the 12 edges of a regular octahedron with n or fewer colors. The Schläfli symbols of the cube and octahedron are {4,3} and {3,4} respectively. They are mutually dual. For an unoriented coloring, chiral pairs are counted as one. - Robert A. Russell, Oct 17 2020

Crossrefs

Cf. A060530 (oriented), A337406 (chiral), A331351 (achiral), A128766 (cube vertices, octahedron faces), A198833 (cube faces, octahedron vertices), A063842(n-1) (tetrahedron), A337963 (dodecahedron, icosahedron).
Row 3 of A337408 (orthotope edges, orthoplex ridges) and A337412 (orthoplex edges, orthotope ridges).

Programs

  • Mathematica
    Table[CycleIndex[KSubsetGroup[Automorphisms[CubicalGraph], Edges[CubicalGraph]],s] /. Table[s[i]->n, {i,1,6}], {n,1,15}]
    Table[(8n^2+12n^3+8n^4+4n^6+12n^7+3n^8+n^12)/48, {n,20}] (* Robert A. Russell, Oct 17 2020 *)

Formula

a(n) = n^12/48 + n^8/16 + n^7/4 + n^6/12 + n^4/6 + n^3/4 + n^2/6.
Cycle index = 1/48(s_1^12+3s_1^4s_2^4+12s_1^2s_2^5+4s_2^6+8s_3^4+12s_4^3+8s_6^2).
G.f.: -x*(76*x^10 +10016*x^9 +212772*x^8 +1380453*x^7 +3384939*x^6 +3388593*x^5 +1380279*x^4 +211623*x^3 +10317*x^2 +131*x +1)/(x -1)^13. [Colin Barker, Aug 13 2012]
From Robert A. Russell, Oct 17 2020: (Start)
a(n) = A060530(n) - A337406(n) = (A060530(n) + A331351(n)) / 2 = A337406(n) + A331351(n).
a(n) = 1*C(n,1) + 142*C(n,2) + 11682*C(n,3) + 310536*C(n,4) + 3460725*C(n,5) + 19870590*C(n,6) + 65886660*C(n,7) + 133585200*C(n,8) + 168399000*C(n,9) + 128898000*C(n,10) + 54885600*C(n,11) + 9979200*C(n,12), where the coefficient of C(n,k) is the number of unoriented colorings using exactly k colors. (End)