A199429 Decimal expansion of x>0 satisfying x^2+x*sin(x)=cos(x).
6, 4, 3, 4, 3, 6, 3, 6, 4, 1, 3, 8, 0, 2, 6, 1, 5, 8, 6, 4, 2, 0, 9, 8, 9, 1, 4, 3, 0, 4, 0, 1, 3, 1, 8, 2, 6, 8, 7, 4, 4, 6, 7, 2, 4, 1, 9, 4, 5, 7, 8, 5, 1, 6, 3, 2, 3, 8, 7, 4, 9, 1, 9, 8, 5, 8, 8, 7, 5, 2, 2, 9, 2, 2, 2, 7, 2, 5, 9, 4, 1, 7, 6, 4, 1, 7, 8, 8, 8, 7, 0, 7, 8, 5, 2, 7, 8, 5, 7
Offset: 0
Examples
0.6434363641380261586420989143040131826874...
Programs
-
Mathematica
(* Program 1: A199429 *) a = 1; b = 1; c = 1; f[x_] := a*x^2 + b*x*Sin[x]; g[x_] := c*Cos[x] Plot[{f[x], g[x]}, {x, -2 Pi, 2 Pi}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .64, .65}, WorkingPrecision -> 110] RealDigits[r] (* A199429 *) (* Program 2: implicit surface: x^2+u*x*sin(x)=v*cos(x) *) f[{x_, u_, v_}] := x^2 + u*x*Sin[x] - v*Cos[x]; t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1}]}, {u, 0, 10}, {v, u, 100}]; ListPlot3D[Flatten[t, 1]] (* for A199429 *)
-
PARI
g(a,b,c)=solve(x=0,abs(a)+abs(b)+abs(c), my(S=sin(x),C=sqrt(1-s^2)); a*x^2+b*x*S-c*C) g(1,1,1) \\ Charles R Greathouse IV, Feb 07 2025
Comments