A199577 Coefficient triangle of the associated Laguerre polynomials of order 1.
1, -3, 1, 11, -8, 1, -50, 58, -15, 1, 274, -444, 177, -24, 1, -1764, 3708, -2016, 416, -35, 1, 13068, -33984, 23544, -6560, 835, -48, 1, -109584, 341136, -288360, 101560, -17370, 1506, -63, 1, 1026576, -3733920, 3736440, -1595040, 343410, -39900, 2513, -80, 1
Offset: 0
Examples
n\k 0 1 2 3 4 5 6 7 0: 1 1: -3 1 2: 11 -8 1 3: -50 58 -15 1 4: 274 -444 177 -24 1 5: -1764 3708 -2016 416 -35 1 6: 13068 -33984 23544 -6560 835 -48 1 7: -109584 341136 -288360 101560 -17370 1506 -63 1 ...
References
- M. E. H. Ismail (two chapters by W. Van Assche), Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge University Press, 2005.
Crossrefs
Cf. A021009 (Laguerre), A199578 (row sums), A002793(n+1)*(-1)^n (alternating row sums, conjecture). [This conjecture has been proved by Wolfdieter Lang, Dec 12 2011]
Programs
-
Mathematica
Ei[1, y_] := -ExpIntegralEi[-y]; (cc = CoefficientList[#, x]; cc (Length[cc]-1)!)& /@ CoefficientList[(1 - Exp[-x/(1+z)] (1 - x/(1+z)) (Ei[1, -x/(1+z)] - Ei[1, -x]))/(1+z)^2 + O[z]^9, z] // Flatten (* Jean-François Alcover, Oct 28 2019 *)
-
PARI
p(n) = numerator(bestapprPade(Ser(vector(2*n, k, (k-1)!)))); concat(vector(9, n, Vec((-1)^(n-1)*p(n)))) \\ Gheorghe Coserea, Dec 01 2016
Formula
T(n,k) = [x^k] La_n(1; x), n >= 0, k = 0,...,n, with the three-term recurrence of the row polynomials: La_n(1; x) = (x - (2*n + 1))*La_{n-1}(1; x) - (n^2)* La_{n-2}(1; x), with La_{-1}(1; x) = 0, La_0(1; x) = 1.
The e.g.f. for La_n(1; x) is (1 - exp(-x/(1+z))*(1-x/(1+z))*(Ei(1,-x/(1+z)) - Ei(1,-x)))/(1+z)^2, with the exponential integral Ei. See the comments section for the definition and the proof. - Wolfdieter Lang, Dec 04 2011
n-th row polynomial = (-1)^n*(n+1)!*L(n+1, x)*Sum_{k = 0..n+1} 1/(k*L(k, x)*L(k-1, x)), where L(k, x) denotes the k-th Laguerre polynomial. See A021009. - Peter Bala, Mar 22 2024
Comments