cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A199638 Last number in row n of triangle A199636.

Original entry on oeis.org

5, 3, 21, 13, 85, 53, 341, 227, 1365, 909, 5461, 3637, 21845, 14563, 87381, 58253, 349525, 233013, 1398101, 932067, 5592405, 3728269, 22369621, 14913077, 89478485, 59652323, 357913941, 238609293, 1431655765, 954437173, 5726623061, 3817748707, 22906492245
Offset: 4

Views

Author

T. D. Noe, Nov 14 2011

Keywords

Comments

This sequence appears to satisfy a(n) = 4*a(n-2) + a(n-6) - 4*a(n-8). It also appears that a(2n) = A002450(n).

A199637 Least odd number k such that in the Collatz sequence of k there are n even numbers.

Original entry on oeis.org

5, 3, 21, 13, 85, 17, 11, 7, 15, 9, 19, 37, 25, 49, 33, 65, 43, 87, 57, 39, 79, 153, 105, 203, 135, 271, 185, 123, 247, 169, 329, 219, 159, 295, 569, 379, 283, 505, 377, 251, 167, 111, 223, 445, 297, 593, 395, 263, 175, 351, 233, 155, 103, 207, 137, 91, 183
Offset: 4

Views

Author

T. D. Noe, Nov 14 2011

Keywords

Comments

Previous name was: First number in row n of triangle A199636.

Crossrefs

Cf. A199636.

Programs

Extensions

New name from Robert G. Wilson v, Mar 06 2018

A199817 Odd numbers producing 10 even numbers in the Collatz iteration.

Original entry on oeis.org

11, 35, 113, 341
Offset: 1

Views

Author

Vincenzo Librandi, Nov 12 2011

Keywords

Crossrefs

Cf. A131450.
Cf. A199636 (row 10).

Programs

  • Mathematica
    Collatz[n_]:=NestWhileList[If[EvenQ[#],#/2,3 #+1]&,n,#>1&];t={};Do[If[Length[Select[Collatz[n],EvenQ]] == 10,AppendTo[t,n]],{n,1,100000,2}];t

A199818 Odd numbers producing 20 even numbers in the Collatz iteration.

Original entry on oeis.org

43, 131, 133, 397, 405, 433, 435, 441, 475, 1237, 1251, 1285, 1301, 1313, 1325, 1339, 1425, 1427, 1431, 1433, 3861, 3925, 3939, 3941, 3981, 4017, 4019, 4043, 4277, 4293, 4297, 4301, 11605, 11829, 12053, 12131, 12133, 12853, 12885, 12893, 12913, 12931, 36181
Offset: 1

Views

Author

Vincenzo Librandi, Nov 12 2011

Keywords

Comments

For n <10000000, more terms: 36405, 38677, 38741, 38797, 38833, 38835, 116053, 116501, 349525.
See row 20 of A199636. There are A131450(20) = 52 terms. - T. D. Noe, Nov 18 2011

Crossrefs

Cf. A199636.

Programs

  • Mathematica
    Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; t = {}; Do[If[Length[Select[Collatz[n], EvenQ]] == 20, AppendTo[t, n]], {n, 1, 100000, 2}]; t

A243628 Odd numbers producing 30 even numbers in the Collatz iteration.

Original entry on oeis.org

185, 187, 191, 541, 545, 551, 557, 561, 563, 575, 607, 1629, 1635, 1637, 1655, 1659, 1671, 1677, 1681, 1683, 1685, 1687, 1725, 1755, 1803, 1821, 1825, 1833, 2007, 2011, 4885, 4917, 4929, 4953, 4963, 4965, 4979, 5015, 5017, 5029, 5041, 5043, 5045, 5061, 5077, 5081, 5091, 5121
Offset: 1

Views

Author

Vincenzo Librandi, Jun 08 2014

Keywords

Comments

See row 30 of A199636.

Crossrefs

Programs

  • Mathematica
    Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; t = {}; Do[If[Length[Select[Collatz[n], EvenQ]] == 30, AppendTo[t, n]], {n, 1, 100000, 2}]; t
    on30Q[n_]:=Count[NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#!=1&],?EvenQ] ==30; Select[Range[1,5131,2],on30Q] (* _Harvey P. Dale, Mar 18 2023 *)
Showing 1-5 of 5 results.