A191642 Kochański's (or Kochanski's) sequence.
15, 4697, 5548, 14774, 33696, 61072, 111231, 115985, 173819, 563316, 606004, 1751458, 1952544, 3046715, 4397195, 45051907, 653475595, 734915444, 1241384578, 2438767174, 2557084119, 5090226634, 6088149715, 18483120028, 44254634530, 48502484589, 70835215004
Offset: 1
Keywords
References
- A. A. Kochański, Observationes cyclometricae ad facilitandam praxin accomodatae, Acta Eruditorum 4 (1685) 394-398.
Links
- Klaus Brockhaus, Table of n, a(n) for n = 1..1000
- Henryk Fuks, Adam Adamandy Kochanski's approximations of pi: reconstruction of the algorithm, arXiv preprint arXiv:1111.1739 [math.HO], 2011-2014; Math. Intelligencer, Vol. 34 (No. 4), 2012, pp. 40-45.
- Henryk Fukś, Magic Squares of Subtraction of Adam Adamandy Kochański, in Research in History and Philosophy of Mathematics, Proceedings of the Canadian Society for History and Philosophy of Mathematics (CSHPM), 2017, pp. 81-95.
- Adam Adamany Kochański, Observationes Cyclometricae ad facilitandam Praxin accomodatae, original Latin text from Acta Eruditorum 4, 394-396 (1685), with English translation and annotations (by Henryk Fuks); arXiv:1106.1808 [math.HO], 2011.
- Wikipedia, Adam Adamandy Kochański
Programs
-
Maple
Digits := 100; alpha:=Pi; a:= floor(alpha); g:=(R,S)->floor( (alpha-a)/(R-alpha*S)); S[1]:=floor(1/(alpha-a)); R[1]:=1+a*S[1]; for n from 2 to 10 do S[n] := S[n-1]*(g(R[n-1], S[n-1])+1)+1: R[n] := R[n-1]*(g(R[n-1], S[n-1])+1)+a: end do: seq(g(R[i], S[i]), i = 1 .. 10);
-
Mathematica
g[x_, y_] = Floor[N[(Pi - 3)/(x - Pi*y), 200]]; R = 22; S = 7; Reap[For[i = 1, i <= 27, i++, b = g[R, S]; S = S*(b+1)+1; R = R*(b+1)+3; Print[b]; Sow[b]]][[2, 1]]; (* Jean-François Alcover, Feb 21 2019, from PARI *)
-
PARI
default(realprecision, 1000); g(x,y)=floor( (Pi-3)/(x-Pi*y)) R=22; S=7; for(i=1,35, b=g(R,S); S=S*(b+1)+1; R=R*(b+1)+3; print1(b,", "))
Extensions
I added the unaccented version of the name to the definition, to make it easier to search for. - N. J. A. Sloane, Jan 12 2012
Comments