A199660 Number of parity alternating permutations of [n] avoiding descents from odd to even numbers.
1, 1, 2, 1, 5, 2, 20, 6, 114, 24, 864, 120, 8280, 720, 96480, 5040, 1325520, 40320, 20966400, 362880, 374855040, 3628800, 7468070400, 39916800, 163938297600, 479001600, 3929729126400, 6227020800, 102104460057600, 87178291200, 2857878742118400, 1307674368000
Offset: 0
Examples
a(4) = 5: (1,2,3,4), (2,1,4,3), (2,3,4,1), (3,4,1,2), (4,1,2,3). a(5) = 2: (1,2,3,4,5), (3,4,1,2,5).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..300
Crossrefs
Programs
-
Maple
a:= n-> `if`(n=0, 1, `if`(irem(n, 2, 'r')=0, (2^r+r-1)*(r-1)!, r!)): seq(a(n), n=0..35);
-
Mathematica
a[n_] := If[n == 0, 1, With[{r = Quotient[n, 2]}, If[Mod[n, 2] == 0, (2^r+r-1)(r-1)!, r!]]]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Oct 30 2021, after Alois P. Heinz *)
Formula
a(0) = 1, a(2*n) = (2^n+n-1)*(n-1)! for n>0, a(2*n+1) = n!.