cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A231601 Number of permutations of [n] avoiding ascents from odd to even numbers.

Original entry on oeis.org

1, 1, 1, 4, 8, 54, 162, 1536, 6144, 75000, 375000, 5598720, 33592320, 592950960, 4150656720, 84557168640, 676457349120, 15620794116480, 140587147048320, 3628800000000000, 36288000000000000, 1035338990313196800, 11388728893445164800, 355902198372945100800
Offset: 0

Views

Author

Alois P. Heinz, Nov 11 2013

Keywords

Examples

			a(0) = 1: ().
a(1) = 1: 1.
a(2) = 1: 21.
a(3) = 4: 132, 213, 231, 321.
a(4) = 8: 1324, 2413, 2431, 3241, 4132, 4213, 4231, 4321.
a(5) = 54: 13245, 13254, 13524, ..., 54213, 54231, 54321.
a(6) = 162: 132465, 132546, 132645, ..., 654213, 654231, 654321.
		

Crossrefs

Column k=0 of A231777.
Bisection gives: A061711 (even part).

Programs

  • Maple
    a:= n-> ceil(n/2)!*ceil(n/2)^floor(n/2):
    seq(a(n), n=0..30);

Formula

a(n) = ceiling(n/2)! * ceiling(n/2)^floor(n/2).
a(n) = A081123(n+1) * A110138(n).

A285672 Number of permutations p of [n] avoiding consecutive odd sums i+p(i), (i+1)+p(i+1) for all i in [n-1].

Original entry on oeis.org

1, 1, 1, 2, 8, 36, 180, 1008, 6336, 46080, 374400, 3369600, 32659200, 344736000, 3886444800, 47348582400, 611264102400, 8442272563200, 122595843686400, 1890952003584000, 30510694932480000, 520011800985600000, 9231875243458560000, 172292221923655680000
Offset: 0

Views

Author

Alois P. Heinz, Apr 24 2017

Keywords

Examples

			a(0) = 1: the empty permutation.
a(1) = 1: 1.
a(2) = 1: 12.
a(3) = 2: 123, 321.
a(4) = 8: 1234, 1432, 2413, 2431, 3214, 3412, 4213, 4231.
a(5) = 36: 12345, 12543, 13524, 13542, 14325, 14523, 15324, 15342, 24135, 24153, 24315, 24351, 24513, 24531, 31524, 31542, 32145, 32541, 34125, 34521, 35124, 35142, 42135, 42153, 42315, 42351, 42513, 42531, 51324, 51342, 52143, 52341, 53124, 53142, 54123, 54321.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, j, p, t) option remember; `if`(n=0, 1,
         `if`(i=0 or t=1 and p=1, 0, i*b(n-1, i-1, j, 1-p, p))+
         `if`(j=0 or t=1 and p=0, 0, j*b(n-1, i, j-1, 1-p, 1-p)))
        end:
    a:= n-> b(n, floor(n/2), ceil(n/2), 1, 0):
    seq(a(n), n=0..25);
  • Mathematica
    b[n_, i_, j_, p_, t_] := b[n, i, j, p, t] =
         If[n==0, 1, If[i==0 || t ==1 && p==1, 0, i*b[n-1, i-1, j, 1-p, p]] +
         If[j==0 || t==1 && p==0, 0, j*b[n-1, i, j-1, 1-p, 1-p]]];
    a[n_] := b[n, Floor[n/2], Ceiling[n/2], 1, 0];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Aug 30 2021, after Alois P. Heinz *)

A052850 E.g.f.: x/(1-x)+log((1-x)/(1-2*x)).

Original entry on oeis.org

0, 2, 5, 20, 114, 864, 8280, 96480, 1325520, 20966400, 374855040, 7468070400, 163938297600, 3929729126400, 102104460057600, 2857878742118400, 85719362496768000, 2742726680838144000, 93247371837075456000, 3356802948155424768000, 127556444063199191040000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Previous name was: A simple grammar.

Crossrefs

Bisection of A199660. - Alois P. Heinz, Nov 09 2011

Programs

  • Maple
    spec := [S,{B=Sequence(Z,1 <= card),C=Cycle(B),S=Union(B,C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
    a:= n-> `if`(n=0, 0, (2^n+n-1)*(n-1)!): seq(a(n), n=0..25); # Alois P. Heinz, Nov 09 2011
  • Mathematica
    CoefficientList[Series[x/(1-x)+Log[(1-x)/(1-2*x)], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 01 2013 *)

Formula

E.g.f.: (-x-log((-1+x)/(-1+2*x))+log((-1+x)/(-1+2*x))*x)/(-1+x).
Recurrence: {a(1)=2, a(2)=5, a(3)=20, a(4)=114, (2*n^3-2*n)*a(n)+(-3*n^2+2*n+5)*a(n+1)+(-2+n)*a(n+2)}.
For n>0, a(n) = (n-1)! * (2^n+n-1). - Vaclav Kotesovec, Oct 01 2013

Extensions

New name using e.g.f., Vaclav Kotesovec, Oct 01 2013

A232187 Number T(n,k) of parity alternating permutations of [n] with exactly k descents from odd to even numbers; triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-1)/2)), read by rows.

Original entry on oeis.org

1, 1, 2, 1, 1, 5, 3, 2, 8, 2, 20, 44, 8, 6, 66, 66, 6, 114, 594, 414, 30, 24, 624, 1584, 624, 24, 864, 8784, 14544, 4464, 144, 120, 6840, 36240, 36240, 6840, 120, 8280, 147720, 471120, 353520, 55320, 840, 720, 86400, 857520, 1739520, 857520, 86400, 720, 96480
Offset: 0

Views

Author

Alois P. Heinz, Nov 20 2013

Keywords

Comments

T(2n+1,k) = T(2n+1,n-k).
T(2n+2,n) = T(2n+1,n) + T(2n+3,n+1).

Examples

			T(5,0) = 2: 12345, 34125.
T(5,1) = 8: 12543, 14325, 14523, 32145, 34521, 52143, 52341, 54123.
T(5,2) = 2: 32541, 54321.
T(6,2) = 8: 163254, 165432, 321654, 325416, 541632, 543216, 632541, 654321.
T(7,0) = 6: 1234567, 1256347, 3412567, 3456127, 5612347, 5634127.
T(7,1) = 66: 1234765, 1236547, 1236745, ..., 7456123, 7612345, 7634125.
T(7,2) = 66: 1254763, 1276543, 1432765, ..., 7652143, 7652341, 7654123.
T(7,3) = 6: 3254761, 3276541, 5432761, 5476321, 7632541, 7654321.
Triangle T(n,k) begins:
:  0 :   1;
:  1 :   1;
:  2 :   2;
:  3 :   1,    1;
:  4 :   5,    3;
:  5 :   2,    8,     2;
:  6 :  20,   44,     8;
:  7 :   6,   66,    66,     6;
:  8 : 114,  594,   414,    30;
:  9 :  24,  624,  1584,   624,   24;
: 10 : 864, 8784, 14544,  4464,  144;
: 11 : 120, 6840, 36240, 36240, 6840, 120;
		

Crossrefs

Column k=0 gives: A199660.
Row sums give: A092186 (for n>0).
T(2n+1,n) = A000142(n).
T(2n+2,n) = A001048(n+1).

Formula

T(2n+1,k) = n! * A173018(n+1,k) = A000142(n) * A173018(n+1,k).
Showing 1-4 of 4 results.