A199673 Number of ways to form k labeled groups, each with a distinct leader, using n people. Triangle T(n,k) = n!*k^(n-k)/(n-k)! for 1 <= k <= n.
1, 2, 2, 3, 12, 6, 4, 48, 72, 24, 5, 160, 540, 480, 120, 6, 480, 3240, 5760, 3600, 720, 7, 1344, 17010, 53760, 63000, 30240, 5040, 8, 3584, 81648, 430080, 840000, 725760, 282240, 40320, 9, 9216, 367416, 3096576, 9450000, 13063680, 8890560, 2903040, 362880
Offset: 1
Examples
T(3,2)=12 since there are 12 ways to form group 1 and group 2, both with leaders, using people p1, p2, and p3, as illustrated below. The leader will be denoted Lj if person pj is designated the leader of the group. Group 1 Group 2 {L1,p2} {L3} {L1,p3} {L2} {L1} {L2,p3} {L1} {p2,L3} {L2,p1} {L3} {L2,p3} {L1} {L2} {L1,p3} {L2} {p1,L3} {L3,p2} {L1} {L3,p1} {L2} {L3} {L1,p2} {L3} {p1,L2} First rows of triangle T(n,k): 1; 2, 2; 3, 12, 6; 4, 48, 72, 24; 5, 160, 540, 480, 120; 6, 480, 3240, 5760, 3600, 720; 7, 1344, 17010, 53760, 63000, 30240, 5040; 8, 3584, 81648, 430080, 840000, 725760, 282240, 40320; 9, 9216, 367416, 3096576, 9450000, 13063680, 8890560, 2903040, 362880;
Links
- Joerg Arndt, Table of n, a(n) for n = 1..561
- George Kesidis, Takis Konstantopoulos, and Michael A. Zazanis, Age of information without service preemption, arXiv:2104.08050 [cs.PF], 2021.
- Dennis P. Walsh, Assigning people into labeled groups with leaders
- Dennis P. Walsh, Toy Story 2
Programs
-
Magma
[Factorial(n)*k^(n-k)/Factorial(n-k): k in [1..n], n in [1..9]]; // Bruno Berselli, Nov 09 2011
-
Maple
seq(seq(n!*k^(n-k)/(n-k)!, k=1..n), n=1..9);
-
Mathematica
nn = 10; a = y x Exp[x]; f[list_] := Select[list, # > 0 &]; Drop[Map[f, Range[0, nn]! CoefficientList[Series[1/(1 - a) , {x, 0, nn}], {x, y}]], 1] // Flatten (* Geoffrey Critzer, Jan 21 2012 *)
-
PARI
T(n,k)=n!*k^(n-k)/(n-k)!; /* print triangle: */ for (n=1, 15, for (k=1,n, print1(T(n,k),", ")); print() ); /* Joerg Arndt, Sep 21 2012 */
Formula
T(n,k) = n!*k^(n-k)/(n-k)! = k!*k^(n-k)*binomial(n,k) for 1 <= k <= n.
E.g.f.: (x*e^x)^k,for fixed k.
T(n,k1+k2) = Sum_{j=0..n} binomial(n,j)*T(j,k1)*T(n-j,k2).
T(n,1) = A000027(n);
T(n,2) = A001815(n);
T(n,3) = A052791(n);
Sum_{k=1..n} T(n,k) = A006153(n).
T(n,n) = A000142(n) = n!. - Dennis P. Walsh, Sep 10 2012
Comments