cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199771 Row sums of the triangle in A199332.

Original entry on oeis.org

1, 5, 12, 26, 45, 75, 112, 164, 225, 305, 396, 510, 637, 791, 960, 1160, 1377, 1629, 1900, 2210, 2541, 2915, 3312, 3756, 4225, 4745, 5292, 5894, 6525, 7215, 7936, 8720, 9537, 10421, 11340, 12330, 13357, 14459, 15600, 16820, 18081, 19425, 20812, 22286, 23805
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 23 2011

Keywords

Comments

a(n) = Sum_{k=1..n} A199332(n,k);
a(2*n-1) = A015237(n); a(2*n) = A048395(n);
a(n+1) = A200252(n).

Programs

  • Haskell
    a199771  = sum . a199332_row
    
  • Mathematica
    LinearRecurrence[{2,1,-4,1,2,-1},{1,5,12,26,45,75},50] (* Harvey P. Dale, Apr 27 2019 *)
  • PARI
    a(n)=([0,1,0,0,0,0; 0,0,1,0,0,0; 0,0,0,1,0,0; 0,0,0,0,1,0; 0,0,0,0,0,1; -1,2,1,-4,1,2]^(n-1)*[1;5;12;26;45;75])[1,1] \\ Charles R Greathouse IV, Jun 18 2017

Formula

G.f.: x*( 1+3*x+x^2+x^3 ) / ((1+x)^2*(x-1)^4). - R. J. Mathar, Nov 24 2011
a(n) = n*(3+2*n^2+4*n+(-1)^n)/8. - R. J. Mathar, Jun 23 2023