cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199804 G.f.: 1/(1+x+x^3).

Original entry on oeis.org

1, -1, 1, -2, 3, -4, 6, -9, 13, -19, 28, -41, 60, -88, 129, -189, 277, -406, 595, -872, 1278, -1873, 2745, -4023, 5896, -8641, 12664, -18560, 27201, -39865, 58425, -85626, 125491, -183916, 269542, -395033, 578949, -848491, 1243524, -1822473, 2670964, -3914488, 5736961, -8407925, 12322413, -18059374, 26467299, -38789712, 56849086, -83316385
Offset: 0

Views

Author

N. J. A. Sloane, Nov 10 2011

Keywords

Comments

There are several similar sequences already in the OEIS, but this one warrants its own entry because it is one of Hirschhorn's family.

Programs

  • Mathematica
    CoefficientList[Series[1/(1+x+x^3),{x,0,50}],x] (* or *) LinearRecurrence[ {-1,0,-1},{1,-1,1},50] (* Harvey P. Dale, Feb 18 2016 *)
  • PARI
    x='x+O('x^50); Vec(1/(1+x+x^3)) \\ G. C. Greubel, Apr 29 2017

Formula

a(n) = (-1)^n*A000930(n). - R. J. Mathar, Jul 10 2012
G.f.: 1 - x/(G(0) + x) where G(k) = 1 - x^2/(1 - x^2/(x^2 - 1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 16 2012
G.f.: Q(0)/2 , where Q(k) = 1 + 1/(1 - x*(4*k+1 + x^2)/( x*(4*k+3 + x^2) - 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 08 2013
a(0)=1, a(1)=-1, a(2)=1, a(n)=a(n-1)-a(n-3). - Harvey P. Dale, Feb 18 2016