A199814 Decimal expansion of x value of the unique pairwise intersection on (0,1) of distinct order 5 power tower functions with parentheses inserted.
4, 2, 8, 0, 1, 1, 0, 3, 7, 9, 6, 4, 7, 2, 9, 9, 2, 3, 9, 0, 2, 0, 4, 1, 6, 9, 3, 9, 1, 7, 5, 1, 2, 6, 5, 5, 3, 3, 7, 6, 7, 1, 0, 7, 3, 7, 8, 0, 3, 9, 3, 9, 2, 9, 2, 8, 5, 6, 7, 5, 4, 5, 9, 1, 3, 3, 3, 3, 9, 2, 4, 7, 5, 0, 2, 3, 3, 2, 9, 3, 1, 5, 9, 1, 0, 8, 1, 6, 7, 6, 4, 4, 2, 5, 0, 3, 0, 6, 7, 1, 9, 6, 5, 2, 4
Offset: 0
Examples
0.42801103796472992390204...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Vladimir Reshetnikov, Intersections of x^x^...^x, SeqFan Discussion, Nov 2011.
- Eric Weisstein's World of Mathematics, Power Tower
Crossrefs
Programs
-
Maple
f:= x-> (x^(x^x))^(x^x): g:= x-> x^(x^((x^x)^x)): nmax:= 140: Digits:= nmax+10: xv:= fsolve(f(x)=g(x), x=0..0.99): s:= convert(xv, string): seq(parse(s[n+2]), n=0..nmax);
-
Mathematica
x /. FindRoot[x^(x^2) - 2*x == 0, {x, 1/2}, WorkingPrecision -> 110] // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Dec 05 2013 *)
Formula
x in (0,1) : x^(x^2)-2*x = 0.
Comments