cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A199879 Continued fraction for x value of the unique pairwise intersection on (0,1) of distinct order 5 power tower functions with parentheses inserted.

Original entry on oeis.org

0, 2, 2, 1, 35, 1, 2, 2, 1, 2, 5, 3, 1, 1, 45, 1, 1, 6, 11, 2, 9, 2, 2, 2, 2, 1, 1, 1, 29, 1, 3, 7, 4, 1, 7, 61, 1, 1, 2, 1, 2, 6, 2, 1, 1, 96, 11, 1, 2, 1, 1, 4, 14, 1, 10, 1, 2, 1, 7, 4, 7, 5, 10, 1, 6, 2, 2, 9, 6, 8, 3, 1, 3, 1, 3, 7, 9
Offset: 0

Views

Author

Alois P. Heinz, Nov 11 2011

Keywords

Examples

			0.42801103796472992390204...
		

Crossrefs

Cf. A199814 (decimal expansion), A199880 (Engel expansion).

Programs

  • Maple
    with(numtheory):
    f:= x-> (x^(x^x))^(x^x): g:= x-> x^(x^((x^x)^x)):
    Digits:= 200:
    xv:= fsolve(f(x)=g(x), x=0..0.99):
    cfrac(evalf(xv), 120, 'quotients')[];
  • Mathematica
    terms = 77; digits = terms+10; xv = x /. FindRoot[x^(x^2) - 2x == 0, {x, 1/2}, WorkingPrecision -> digits]; ContinuedFraction[xv, terms] (* Jean-François Alcover, Mar 24 2017 *)

Extensions

Offset changed by Andrew Howroyd, Jul 03 2024

A199880 Engel expansion of x value of the unique pairwise intersection on (0,1) of distinct order 5 power tower functions with parentheses inserted.

Original entry on oeis.org

3, 4, 8, 12, 15, 33, 70, 4338, 22062, 46566, 98091, 255284, 2715877, 10855925, 150153128, 10009347774, 34679420772, 43644678207, 74587800101, 229110893125, 233558717156, 286861037311, 299617642336, 312870987050, 1632483095154, 31761226898013, 66327161231576
Offset: 1

Views

Author

Alois P. Heinz, Nov 11 2011

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

Examples

			0.42801103796472992390204...
		

References

  • F. Engel, Entwicklung der Zahlen nach Stammbrüchen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmänner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A199814 (decimal expansion), A199879 (continued fraction).

Programs

  • Maple
    f:= x-> (x^(x^x))^(x^x): g:= x-> x^(x^((x^x)^x)):
    Digits:= 700:
    xv:= fsolve(f(x)=g(x), x=0..0.99):
    engel:= (r, n)-> `if`(n=0 or r=0, NULL, [ceil(1/r), engel(r*ceil(1/r)-1, n-1)][]):
    engel(xv, 39);
Showing 1-2 of 2 results.