A199879 Continued fraction for x value of the unique pairwise intersection on (0,1) of distinct order 5 power tower functions with parentheses inserted.
0, 2, 2, 1, 35, 1, 2, 2, 1, 2, 5, 3, 1, 1, 45, 1, 1, 6, 11, 2, 9, 2, 2, 2, 2, 1, 1, 1, 29, 1, 3, 7, 4, 1, 7, 61, 1, 1, 2, 1, 2, 6, 2, 1, 1, 96, 11, 1, 2, 1, 1, 4, 14, 1, 10, 1, 2, 1, 7, 4, 7, 5, 10, 1, 6, 2, 2, 9, 6, 8, 3, 1, 3, 1, 3, 7, 9
Offset: 0
Examples
0.42801103796472992390204...
Programs
-
Maple
with(numtheory): f:= x-> (x^(x^x))^(x^x): g:= x-> x^(x^((x^x)^x)): Digits:= 200: xv:= fsolve(f(x)=g(x), x=0..0.99): cfrac(evalf(xv), 120, 'quotients')[];
-
Mathematica
terms = 77; digits = terms+10; xv = x /. FindRoot[x^(x^2) - 2x == 0, {x, 1/2}, WorkingPrecision -> digits]; ContinuedFraction[xv, terms] (* Jean-François Alcover, Mar 24 2017 *)
Extensions
Offset changed by Andrew Howroyd, Jul 03 2024
Comments