cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A199813 G.f.: exp( Sum_{n>=1} A000984(n)*A000172(n) * x^n/n ), which involves central binomial coefficients (A000984) and Franel numbers (A000172).

Original entry on oeis.org

1, 4, 38, 504, 8249, 154036, 3149326, 68741880, 1576163328, 37548785408, 922252542128, 23222906277952, 596981991939677, 15616173859832740, 414621835401615110, 11150969618415168280, 303278916800906999191, 8330190277527648516572, 230814933905555392525290
Offset: 0

Views

Author

Paul D. Hanna, Nov 10 2011

Keywords

Comments

Sum_{k=0..n} C(n,k)^2 = A000984(n) defines central binomial coefficients.
Sum_{k=0..n} C(n,k)^3 = A000172(n) defines Franel numbers.

Examples

			G.f.: A(x) = 1 + 4*x + 38*x^2 + 504*x^3 + 8249*x^4 + 154036*x^5 +...
where
log(A(x)) = 2*2*x + 6*10*x^2/2 + 20*56*x^3/3 + 70*346*x^4/4 + 252*2252*x^5/5 + 924*15184*x^6/6 +...+ A000984(n)*A000172(n)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,binomial(2*m, m)*sum(k=0, m, binomial(m, k)^3)*x^m/m)+x*O(x^n)),n)}
Showing 1-1 of 1 results.