A199932 Number of meanders of length n.
1, 3, 5, 12, 17, 47, 65, 169, 279, 645, 1025, 2698, 4097, 9917, 17345, 39698, 65537, 161395, 262145, 624004, 1089007, 2449881, 4194305, 10097733, 16812683, 38754747, 69117097, 155178266, 268435457, 629929761, 1073741825, 2459703907, 4400500499, 9756737721
Offset: 1
Keywords
Links
- Peter Luschny, Meander.
Programs
-
Maple
A199932 := proc(n) local d, k, j, i; add(add(add(add( (-1)^(j+i)*binomial(i,j)*binomial(n/d-1,k)^d*((n/d)/(k+1))^j, i=0..d-1),j=0..d-1),k=0..(n/d-1)),d=numtheory[divisors](n)) end: seq(A199932(i),i=1..34);
-
Mathematica
A198060[m_, n_] := Sum[ Sum[ Sum[(-1)^(j+i)*Binomial[i, j]* Binomial[n, k]^(m+1)*(n+1)^j*(k+1)^(m-j)/(k+1)^m, {i, 0, m}], {j, 0, m}], {k, 0, n}]; a[n_] := Sum[ A198060[d-1, n/d-1], {d, Divisors[n]}]; Table[a[n], {n, 1, 34}] (* Jean-François Alcover, Jun 27 2013 *)
Formula
a(n) = Sum_{d|n} A198060(d-1,n/d-1).
Comments