cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199932 Number of meanders of length n.

Original entry on oeis.org

1, 3, 5, 12, 17, 47, 65, 169, 279, 645, 1025, 2698, 4097, 9917, 17345, 39698, 65537, 161395, 262145, 624004, 1089007, 2449881, 4194305, 10097733, 16812683, 38754747, 69117097, 155178266, 268435457, 629929761, 1073741825, 2459703907, 4400500499, 9756737721
Offset: 1

Views

Author

Peter Luschny, Nov 20 2011

Keywords

Comments

A meander is a closed curve drawn by arcs of equal length and central angles of equal magnitude, starting with a positively oriented arc.
a(n) = 2^(n-1) + 1 iff n is prime.

Crossrefs

Programs

  • Maple
    A199932 := proc(n) local d, k, j, i; add(add(add(add(
    (-1)^(j+i)*binomial(i,j)*binomial(n/d-1,k)^d*((n/d)/(k+1))^j,
    i=0..d-1),j=0..d-1),k=0..(n/d-1)),d=numtheory[divisors](n)) end:
    seq(A199932(i),i=1..34);
  • Mathematica
    A198060[m_, n_] := Sum[ Sum[ Sum[(-1)^(j+i)*Binomial[i, j]* Binomial[n, k]^(m+1)*(n+1)^j*(k+1)^(m-j)/(k+1)^m, {i, 0, m}], {j, 0, m}], {k, 0, n}]; a[n_] := Sum[ A198060[d-1, n/d-1], {d, Divisors[n]}]; Table[a[n], {n, 1, 34}] (* Jean-François Alcover, Jun 27 2013 *)

Formula

a(n) = Sum_{d|n} A198060(d-1,n/d-1).