A199956 Decimal expansion of greatest x satisfying x^2 + 2*cos(x) = 3*sin(x).
1, 8, 5, 4, 7, 7, 8, 4, 1, 0, 3, 5, 6, 7, 5, 1, 7, 7, 4, 1, 4, 1, 9, 3, 9, 5, 8, 1, 7, 3, 6, 9, 9, 8, 7, 6, 1, 2, 0, 4, 0, 2, 7, 3, 4, 6, 6, 2, 5, 0, 8, 3, 5, 1, 5, 6, 1, 8, 5, 4, 3, 4, 9, 8, 5, 1, 4, 3, 3, 5, 0, 3, 4, 7, 8, 0, 5, 7, 7, 0, 2, 7, 3, 9, 6, 7, 0, 0, 4, 1, 6, 7, 4, 8, 0, 9, 8, 5, 4
Offset: 1
Examples
least x: 0.74080336819413223759642692454702162091742... greatest x: 1.854778410356751774141939581736998761204...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 1; b = 2; c = 3; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -1, 3}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .74, .75}, WorkingPrecision -> 110] RealDigits[r] (* A199955 *) r = x /. FindRoot[f[x] == g[x], {x, 1.8, 1.9}, WorkingPrecision -> 110] RealDigits[r] (* A199956 *)
-
PARI
a=1; b=2; c=3; solve(x=.5, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018
Comments