A199967 Decimal expansion of least x satisfying 2*x^2 + cos(x) = 3*sin(x).
4, 5, 0, 4, 1, 2, 2, 3, 6, 3, 8, 3, 2, 4, 9, 1, 3, 3, 7, 6, 4, 7, 8, 1, 9, 0, 7, 8, 3, 8, 3, 9, 7, 7, 8, 4, 1, 7, 1, 6, 1, 9, 0, 7, 4, 6, 3, 2, 2, 9, 7, 3, 5, 9, 9, 9, 4, 0, 9, 3, 4, 8, 3, 9, 5, 8, 0, 6, 3, 6, 2, 8, 3, 9, 7, 8, 0, 8, 5, 2, 8, 5, 8, 6, 5, 1, 7, 2, 8, 8, 8, 2, 1, 7, 7, 4, 9, 0, 2
Offset: 0
Examples
least x: 0.45041223638324913376478190783839778... greatest x: 0.989450014493949167489788332695714...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 2; b = 1; c = 3; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -.1, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110] RealDigits[r] (* A199967 *) r = x /. FindRoot[f[x] == g[x], {x, .98, .99}, WorkingPrecision -> 110] RealDigits[r] (* A200003 *)
-
PARI
a=2; b=1; c=3; solve(x=0, .5, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 23 2018
Extensions
A-number corrected by Jaroslav Krizek, Nov 27 2011
Comments