A200008 Decimal expansion of least x satisfying 4*x^2 + cos(x) = 4*sin(x).
4, 0, 3, 9, 5, 4, 8, 5, 6, 2, 7, 7, 0, 9, 9, 0, 5, 7, 8, 7, 9, 3, 5, 3, 4, 4, 6, 4, 2, 2, 1, 1, 0, 4, 1, 1, 1, 7, 5, 9, 3, 5, 1, 4, 1, 8, 7, 3, 6, 5, 1, 0, 3, 8, 3, 8, 8, 8, 5, 6, 4, 5, 4, 9, 5, 7, 2, 7, 5, 8, 6, 8, 5, 8, 4, 8, 9, 0, 1, 6, 0, 8, 0, 0, 5, 2, 9, 6, 5, 2, 1, 1, 0, 7, 6, 1, 7, 1, 7
Offset: 0
Examples
least x: 0.4039548562770990578793534464221104111... greatest x: 0.5924702907925039329312822762880632483...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 4; b = 1; c = 4; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, .3, .7}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .40, .41}, WorkingPrecision -> 110] RealDigits[r] (* A200008 *) r = x /. FindRoot[f[x] == g[x], {x, .59, .60}, WorkingPrecision -> 110] RealDigits[r] (* A200009 *)
-
PARI
a=4; b=1; c=4; solve(x=0, .5, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 23 2018
Comments