A200012 Decimal expansion of least x satisfying x^2 - cos(x) = 2*sin(x) (negated).
3, 9, 4, 1, 2, 4, 1, 9, 2, 8, 5, 8, 9, 7, 5, 9, 6, 0, 0, 9, 9, 7, 0, 5, 3, 9, 9, 3, 5, 4, 5, 9, 0, 0, 9, 8, 5, 3, 6, 9, 2, 2, 4, 9, 6, 1, 9, 3, 9, 1, 2, 2, 9, 7, 9, 2, 1, 9, 8, 4, 8, 1, 1, 6, 8, 5, 3, 1, 1, 8, 7, 4, 1, 7, 6, 0, 2, 4, 8, 1, 7, 9, 3, 5, 8, 3, 4, 5, 6, 0, 3, 0, 7, 1, 7, 9, 2, 1, 5
Offset: 0
Examples
least x: -0.3941241928589759600997053993545900... greatest x: 1.450938449634974431128285576690357738...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 1; b = -1; c = 2; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.4, -.3}, WorkingPrecision -> 110] RealDigits[r] (* A200012 *) r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110] RealDigits[r] (* A200013 *)
-
PARI
a=1; b=-1; c=2; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 23 2018
Comments