A200025 Decimal expansion of greatest x satisfying x^2 - 2*cos(x) = 4*sin(x).
1, 8, 3, 0, 7, 3, 3, 4, 5, 3, 2, 9, 0, 8, 6, 3, 5, 9, 9, 2, 1, 0, 2, 3, 5, 9, 5, 4, 7, 3, 4, 1, 4, 7, 8, 8, 4, 5, 3, 6, 6, 7, 8, 1, 2, 8, 3, 2, 4, 2, 1, 4, 9, 5, 2, 2, 9, 5, 8, 1, 6, 4, 2, 6, 7, 1, 0, 0, 0, 8, 5, 1, 1, 9, 4, 6, 2, 3, 6, 2, 0, 3, 8, 0, 5, 5, 4, 6, 3, 7, 8, 8, 4, 3, 4, 1, 1, 3, 7
Offset: 1
Examples
least x: -0.42352729471869116185741155509692883402... greatest x: 1.8307334532908635992102359547341478845...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 1; b = -2; c = 4; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.43, -.42}, WorkingPrecision -> 110] RealDigits[r] (* A200024 *) r = x /. FindRoot[f[x] == g[x], {x, 1.83, 1.84}, WorkingPrecision -> 110] RealDigits[r] (* A200025 *)
-
PARI
a=1; b=-2; c=4; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018
Comments