A200070 Numbers n such that the sum of the prime divisors equals 2 times the difference between the largest and the smallest prime divisor.
110, 182, 220, 364, 374, 440, 494, 550, 728, 748, 782, 880, 988, 1100, 1210, 1274, 1334, 1456, 1496, 1564, 1760, 1976, 2200, 2294, 2366, 2420, 2548, 2668, 2750, 2912, 2992, 3128, 3182, 3520, 3854, 3952, 4114, 4400, 4588, 4732, 4840, 4982, 5096, 5336, 5500
Offset: 1
Keywords
Examples
98420 is in the sequence because the prime divisors are 2, 5, 7, 19, 37 and the sum 2 + 5 + 7 + 19 + 37 = 70 = 2*(37 - 2).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A071140.
Programs
-
Maple
filter:= proc(n) local P; P:= numtheory:-factorset(n); convert(P,`+`) = 2*(max(P)-min(P)) end proc: select(filter, [$1..10000]); # Robert Israel, Apr 09 2019
-
Mathematica
Select[Range[5500],Plus@@((pl=First/@FactorInteger[#])/2)==pl[[-1]]-pl[[1]]&]
-
PARI
isok(n) = if (n>1, my(f=factor(n)[,1]); 2*(vecmax(f) - vecmin(f)) == vecsum(f)); \\ Michel Marcus, Apr 10 2019