cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200075 G.f. satisfies A(x) = (1 + x*A(x)^2)*(1 + x^2*A(x)^3).

Original entry on oeis.org

1, 1, 3, 11, 45, 198, 914, 4367, 21414, 107155, 544987, 2808978, 14640073, 77025373, 408544815, 2182206259, 11727989593, 63373962690, 344109933186, 1876562458845, 10273572074493, 56443282489240, 311097732946200, 1719707775782826, 9531914043637385, 52963938340248863, 294966593345731623
Offset: 0

Views

Author

Paul D. Hanna, Nov 13 2011

Keywords

Comments

More generally, for fixed parameters p, q, r, and s, if F(x) satisfies:
F(x) = exp( Sum_{n>=1} x^(n*r)*F(x)^(n*p)/n * [Sum_{k=0..n} C(n,k)^2 * x^(k*s)*F(x)^(k*q)] ),
then F(x) = (1 + x^r*F(x)^(p+1))*(1 + x^(r+s)*F(x)^(p+q+1)).

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 11*x^3 + 45*x^4 + 198*x^5 + 914*x^6 +...
Related expansions:
A(x)^2 = 1 + 2*x + 7*x^2 + 28*x^3 + 121*x^4 + 552*x^5 + 2615*x^6 +...
A(x)^3 = 1 + 3*x + 12*x^2 + 52*x^3 + 237*x^4 + 1122*x^5 + 5463*x^6 +...
A(x)^5 = 1 + 5*x + 25*x^2 + 125*x^3 + 630*x^4 + 3211*x^5 + 16545*x^6 +...
where A(x) = 1 + x*A(x)^2 + x^2*A(x)^3 + x^3*A(x)^5.
The logarithm of the g.f. A = A(x) equals the series:
log(A(x)) = (1 + x*A)*x*A + (1 + 2^2*x*A + x^2*A^2)*x^2*A^2/2 +
(1 + 3^2*x*A + 3^2*x^2*A^2 + x^3*A^3)*x^3*A^3/3 +
(1 + 4^2*x*A + 6^2*x^2*A^2 + 4^2*x^3*A^3 + x^4*A^4)*x^4*A^4/4 +
(1 + 5^2*x*A + 10^2*x^2*A^2 + 10^2*x^3*A^3 + 5^2*x^4*A^4 + x^5*A^5)*x^5*A^5/5 +
(1 + 6^2*x*A + 15^2*x^2*A^2 + 20^2*x^3*A^3 + 15^2*x^4*A^4 + 6^2*x^5*A^5 + x^6*A^6)*x^6*A^6/6 +...
more explicitly,
log(A(x)) = x + 5*x^2/2 + 25*x^3/3 + 129*x^4/4 + 686*x^5/5 + 3713*x^6/6 + 20350*x^7/7 +...
Given G(x) where 1+x*G(x) is the g.f. of A004148, then the coefficients in the powers of G(x) begin:
1: [(1), 1, 2, 4, 8, 17, 37, 82, 185, 423, 978, ...];
2: [1,(2), 5, 12, 28, 66, 156, 370, 882, 2112, ...];
3: [1, 3,(9), 25, 66, 171, 437, 1107, 2790, 7009, ...];
4: [1, 4, 14,(44), 129, 364, 1000, 2696, 7172, 18892, ...];
5: [1, 5, 20, 70,(225), 686, 2015, 5760, 16135, 44500, ...];
6: [1, 6, 27, 104, 363,(1188), 3713, 11214, 32994, 95106, ...];
7: [1, 7, 35, 147, 553, 1932,(6398), 20350, 62734, 188650, ...];
8: [1, 8, 44, 200, 806, 2992, 10460,(34936), 112585, 352560, ...];
9: [1, 9, 54, 264, 1134, 4455, 16389, 57330,(192726), 627406, ...]; ...;
the coefficients in parenthesis form the initial terms of this sequence:
[1/1, 2/2, 9/3, 44/4, 225/5, 1188/6, 6398/7, 34936/8, 192726/9, ...].
The coefficients in the logarithm of the g.f. is also a diagonal in the above table.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[1/x*InverseSeries[Series[x*(1-x-x^2 + Sqrt[(1+x+x^2)*(1-3*x+x^2)])/2,{x,0,20}],x],x] (* Vaclav Kotesovec, Sep 19 2013 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=(1+x*A^2)*(1+x^2*A^3)+x*O(x^n));polcoeff(A,n)}
    
  • PARI
    {a(n)=polcoeff(1/x*serreverse(x*(1-x-x^2 + sqrt((1+x+x^2)*(1-3*x+x^2)+x*O(x^n)))/2),n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*x^j*A^j)*(x*A+x*O(x^n))^m/m))); polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (1-x*A)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*A^j)*x^m*A^m/m))); polcoeff(A, n, x)}

Formula

G.f.: (1/x)*Series_Reversion( x*(1-x-x^2 + sqrt((1+x+x^2)*(1-3*x+x^2)))/2 ).
a(n) = [x^n] G(x)^(n+1)/(n+1), where 1+x*G(x) is the g.f. of A004148.
G.f. A(x) satisfies:
(1) A(x) = (1/x)*Series_Reversion( x/G(x) ) where 1+x*G(x) is the g.f. of A004148.
(2) A(x) = G(x*A(x)) where G(x) = A(x/G(x)) and 1+x*G(x) is the g.f. of A004148.
(3) A(x) = exp( Sum_{n>=1} (Sum_{k=0..n} C(n,k)^2 * x^k*A(x)^k) * x^n*A(x)^n/n ).
(4) A(x) = exp( Sum_{n>=1} (1-x*A(x))^(2*n+1)*(Sum_{k>=0} C(n+k,k)^2*x^k*A(x)^k) * x^n*A(x)^n/n ).
Recurrence: 8*n*(2*n+1)*(4*n+1)*(4*n+3)*(1557671*n^7 - 18939961*n^6 + 94817789*n^5 - 252067387*n^4 + 381880748*n^3 - 327052012*n^2 + 145198992*n - 25583040)*a(n) = (2026529971*n^11 - 24640889261*n^10 + 122927623620*n^9 - 322351865586*n^8 + 467303512311*n^7 - 343677276405*n^6 + 61590777290*n^5 + 76066203476*n^4 - 45605627832*n^3 + 4625651136*n^2 + 1916801280*n - 338688000)*a(n-1) + 2*(800642894*n^11 - 10936104295*n^10 + 62803409541*n^9 - 196202081616*n^8 + 357730085364*n^7 - 370711524567*n^6 + 174415015309*n^5 + 25877389846*n^4 - 63266190708*n^3 + 19055552472*n^2 + 1313789760*n - 861840000)*a(n-2) + 6*(308418858*n^11 - 4675368852*n^10 + 30103912361*n^9 - 106665982366*n^8 + 223860428776*n^7 - 274000455628*n^6 + 166116940489*n^5 - 2432493994*n^4 - 54297743044*n^3 + 22033617000*n^2 + 936446400*n - 1315440000)*a(n-3) + 6*(n-2)*(2*n-7)*(3*n-10)*(3*n-8)*(1557671*n^7 - 8036264*n^6 + 13889114*n^5 - 7559372*n^4 - 2491645*n^3 + 2975476*n^2 - 179460*n - 187200)*a(n-4). - Vaclav Kotesovec, Sep 19 2013
a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = 1301/1024 + 1/(1024*sqrt(3/(7183147 - (2002819072*2^(2/3))/(3725055779 + 42057117*sqrt(16305))^(1/3) + 1024*(7450111558 + 84114234*sqrt(16305))^(1/3)))) + (1/2)*sqrt(7183147/393216 - (3725055779 + 42057117*sqrt(16305))^(1/3)/(384*2^(2/3)) + 977939/(192*(7450111558 + 84114234*sqrt(16305))^(1/3)) + (1/131072)*(4194454317*sqrt(3/(7183147 - (2002819072*2^(2/3))/(3725055779 + 42057117*sqrt(16305))^(1/3) + 1024*(7450111558 + 84114234*sqrt(16305))^(1/3))))) = 5.89828930084513611... is the root of the equation -108 - 1188*d - 1028*d^2 - 1301*d^3 + 256*d^4 = 0 and c = 0.656947859044624009263362998790812821830934... - Vaclav Kotesovec, Sep 19 2013
a(n) = Sum_{k=0..floor(n/2)} binomial(2*n-k+1,k) * binomial(2*n-k+1,n-2*k) / (2*n-k+1). - Seiichi Manyama, Jul 18 2023