A200102 Decimal expansion of greatest x satisfying x^2 - 4*cos(x) = 2*sin(x).
1, 5, 0, 4, 0, 7, 4, 3, 6, 5, 6, 0, 3, 9, 0, 8, 4, 5, 6, 2, 5, 7, 7, 0, 9, 6, 8, 1, 3, 1, 2, 5, 9, 7, 2, 7, 8, 5, 5, 0, 0, 6, 5, 6, 0, 9, 3, 9, 5, 9, 0, 8, 3, 2, 2, 3, 4, 0, 3, 8, 1, 1, 2, 3, 9, 7, 6, 0, 1, 6, 5, 6, 2, 7, 5, 7, 6, 0, 1, 4, 0, 7, 0, 4, 0, 8, 6, 7, 1, 7, 2, 8, 3, 5, 5, 4, 8, 7, 5
Offset: 1
Examples
least x: -0.91770131583160047517052439095392148771... greatest x: 1.50407436560390845625770968131259727...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 1; b = -4; c = 2; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.92, -.91}, WorkingPrecision -> 110] RealDigits[r] (* A200101 *) r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110] RealDigits[r] (* A200102 *)
-
PARI
a=1; b=-4; c=2; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 25 2018
Comments