A200103 Decimal expansion of least x satisfying x^2 - 4*cos(x) = 3*sin(x), negated.
7, 9, 9, 2, 0, 0, 8, 1, 6, 8, 9, 5, 0, 9, 7, 0, 0, 5, 9, 4, 4, 4, 6, 0, 0, 6, 9, 2, 3, 2, 1, 1, 0, 1, 0, 4, 1, 2, 5, 1, 2, 1, 2, 6, 7, 1, 1, 1, 6, 1, 4, 3, 6, 3, 7, 8, 0, 2, 0, 8, 4, 8, 6, 9, 4, 0, 5, 8, 0, 2, 7, 0, 8, 4, 8, 0, 7, 3, 4, 1, 6, 4, 1, 1, 8, 9, 1, 8, 7, 8, 2, 4, 3, 0, 4, 5, 4, 2, 1
Offset: 0
Examples
least x: -0.79920081689509700594446006923211010... greatest x: 1.643556567520171656906524761634888...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 1; b = -4; c = 3; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.8, -.7}, WorkingPrecision -> 110] RealDigits[r] (* A200103 *) r = x /. FindRoot[f[x] == g[x], {x, 1.64, 1.65}, WorkingPrecision -> 110] RealDigits[r] (* A200104 *)
-
PARI
a=1; b=-4; c=3; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 25 2018
Comments