A200112 Decimal expansion of greatest x satisfying 2*x^2-cos(x) = 3*sin(x).
1, 2, 5, 7, 4, 1, 1, 4, 2, 9, 4, 9, 4, 7, 5, 9, 2, 5, 6, 0, 2, 2, 3, 7, 3, 0, 9, 8, 1, 4, 8, 0, 3, 8, 9, 5, 2, 5, 2, 1, 6, 0, 2, 4, 9, 3, 6, 7, 8, 6, 4, 7, 2, 8, 0, 1, 2, 9, 2, 2, 8, 1, 6, 3, 4, 8, 6, 2, 7, 9, 2, 8, 1, 1, 1, 6, 5, 0, 3, 7, 3, 9, 5, 0, 0, 0, 0, 0, 8, 8, 4, 9, 9, 4, 8, 5, 4, 7, 4
Offset: 1
Examples
least x: -0.27418592805983157901293857616592610671... greatest x: 1.25741142949475925602237309814803895...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 2; b = -1; c = 3; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.28, -.27}, WorkingPrecision -> 110] RealDigits[r] (* A200111 *) r = x /. FindRoot[f[x] == g[x], {x, 1.25, 1.26}, WorkingPrecision -> 110] RealDigits[r] (* A200112 *)
-
PARI
a=2; b=-1; c=3; solve(x=1.25, 1.26, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018
Comments