A200114 Decimal expansion of least x satisfying 2*x^2 - cos(x) = 4*sin(x), negated.
2, 2, 1, 2, 3, 4, 7, 1, 6, 8, 5, 6, 5, 5, 0, 8, 4, 5, 9, 2, 8, 7, 5, 1, 6, 1, 4, 5, 6, 5, 1, 7, 9, 1, 5, 6, 6, 1, 6, 0, 0, 1, 8, 4, 8, 1, 0, 3, 7, 5, 1, 2, 2, 6, 1, 0, 9, 7, 5, 6, 4, 8, 7, 2, 2, 1, 3, 6, 8, 0, 3, 2, 0, 7, 6, 1, 3, 9, 5, 9, 6, 8, 0, 3, 8, 5, 5, 3, 6, 8, 5, 1, 5, 0, 2, 9, 7, 5, 8
Offset: 0
Examples
least x: -0.22123471685655084592875161456517915661... greatest x: 1.431778732687231131820591799700558843...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 2; b = -1; c = 4; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.23, -.22}, WorkingPrecision -> 110] RealDigits[r] (* A200114 *) r = x /. FindRoot[f[x] == g[x], {x, 1.43, 1.44}, WorkingPrecision -> 110] RealDigits[r] (* A200115 *)
-
PARI
a=2; b=-1; c=4; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 29 2018
Comments