A200126 Decimal expansion of least x satisfying 2*x^2 - 3*cos(x) = 4*sin(x), negated.
5, 3, 0, 6, 3, 3, 0, 4, 7, 4, 9, 6, 8, 4, 8, 8, 8, 0, 1, 6, 6, 8, 0, 4, 1, 7, 5, 6, 7, 1, 0, 6, 4, 1, 0, 0, 2, 8, 1, 6, 1, 9, 5, 6, 3, 6, 8, 5, 3, 5, 6, 4, 4, 6, 1, 4, 8, 4, 3, 4, 2, 1, 2, 0, 9, 6, 5, 7, 3, 0, 5, 4, 4, 1, 6, 7, 8, 8, 8, 3, 6, 3, 9, 5, 4, 1, 6, 4, 1, 4, 1, 5, 8, 8, 6, 7, 2, 2, 6
Offset: 0
Examples
least x: -0.530633047496848880166804175671064100... greatest x: 1.4652353861426318569459268305726949...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 2; b = -3; c = 4; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.54, -.53}, WorkingPrecision -> 110] RealDigits[r] (* A200126 *) r = x /. FindRoot[f[x] == g[x], {x, 1.46, 1.47}, WorkingPrecision -> 110] RealDigits[r] (* A200127 *)
-
PARI
a=2; b=-3; c=4; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 01 2018
Comments