A200213 Ordered factorizations of n with 2 distinct parts, both > 1.
0, 0, 0, 0, 0, 2, 0, 2, 0, 2, 0, 4, 0, 2, 2, 2, 0, 4, 0, 4, 2, 2, 0, 6, 0, 2, 2, 4, 0, 6, 0, 4, 2, 2, 2, 6, 0, 2, 2, 6, 0, 6, 0, 4, 4, 2, 0, 8, 0, 4, 2, 4, 0, 6, 2, 6, 2, 2, 0, 10, 0, 2, 4, 4, 2, 6, 0, 4, 2, 6, 0, 10, 0, 2, 4, 4, 2, 6, 0, 8, 2, 2, 0, 10, 2
Offset: 1
Examples
a(24) = 6 = card({{2,12},{3,8},{4,6},{6,4},{8,3},{12,2}}).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- Arnold Knopfmacher and Michael Mays, Ordered and Unordered Factorizations of Integers, The Mathematica Journal, Vol 10 (1).
Programs
-
Maple
a := n -> `if`(n<2, 0, numtheory:-tau(n) - `if`(issqr(n), 3, 2)): seq(a(n), n = 1..85); # Peter Luschny, Jul 10 2017
-
Mathematica
OrderedFactorizations[1] = {{}}; OrderedFactorizations[n_?PrimeQ] := {{n}}; OrderedFactorizations[n_] := OrderedFactorizations[n] = Flatten[Function[d, Prepend[#, d] & /@ OrderedFactorizations[n/d]] /@ Rest[Divisors[n]], 1]; a[n_] := With[{of2 = Sort /@ Select[OrderedFactorizations[n], Length[#] == 2 && Length[# // Union] == 2 &] // Union}, Length[Permutations /@ of2 // Flatten[#, 1] &]]; Table[a[n], {n, 1, 85}] (* Jean-François Alcover, Jul 02 2013, copied and adapted from The Mathematica Journal *)
-
PARI
A200213(n) = if(!n,n,sumdiv(n, d, (d<>(n/d))*(d>1)*(d
Antti Karttunen, Jul 07 2017 -
PARI
a(n) = if (n==1, 0, numdiv(n) - issquare(n) - 2); \\ Michel Marcus, Jul 07 2017
-
Scheme
(define (A200213 n) (if (<= n 1) 0 (- (A000005 n) 2 (A010052 n)))) ;; Antti Karttunen, Jul 07 2017
Formula
From Antti Karttunen, Jul 07 & Jul 09 2017: (Start)
Extensions
Description clarified and term a(0) removed by Antti Karttunen, Jul 09 2017