cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200213 Ordered factorizations of n with 2 distinct parts, both > 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 2, 0, 2, 0, 4, 0, 2, 2, 2, 0, 4, 0, 4, 2, 2, 0, 6, 0, 2, 2, 4, 0, 6, 0, 4, 2, 2, 2, 6, 0, 2, 2, 6, 0, 6, 0, 4, 4, 2, 0, 8, 0, 4, 2, 4, 0, 6, 2, 6, 2, 2, 0, 10, 0, 2, 4, 4, 2, 6, 0, 4, 2, 6, 0, 10, 0, 2, 4, 4, 2, 6, 0, 8, 2, 2, 0, 10, 2
Offset: 1

Views

Author

Peter Luschny, Nov 14 2011

Keywords

Examples

			a(24) = 6 = card({{2,12},{3,8},{4,6},{6,4},{8,3},{12,2}}).
		

Crossrefs

Programs

  • Maple
    a := n -> `if`(n<2, 0, numtheory:-tau(n) - `if`(issqr(n), 3, 2)):
    seq(a(n), n = 1..85); # Peter Luschny, Jul 10 2017
  • Mathematica
    OrderedFactorizations[1] = {{}}; OrderedFactorizations[n_?PrimeQ] := {{n}}; OrderedFactorizations[n_] := OrderedFactorizations[n] = Flatten[Function[d, Prepend[#, d] & /@ OrderedFactorizations[n/d]] /@ Rest[Divisors[n]], 1]; a[n_] := With[{of2 = Sort /@ Select[OrderedFactorizations[n], Length[#] == 2 && Length[# // Union] == 2 &] // Union}, Length[Permutations /@ of2 // Flatten[#, 1] &]];  Table[a[n], {n, 1, 85}] (* Jean-François Alcover, Jul 02 2013, copied and adapted from The Mathematica Journal *)
  • PARI
    A200213(n) = if(!n,n,sumdiv(n, d, (d<>(n/d))*(d>1)*(dAntti Karttunen, Jul 07 2017
    
  • PARI
    a(n) = if (n==1, 0, numdiv(n) - issquare(n) - 2); \\ Michel Marcus, Jul 07 2017
    
  • Scheme
    (define (A200213 n) (if (<= n 1) 0 (- (A000005 n) 2 (A010052 n)))) ;; Antti Karttunen, Jul 07 2017

Formula

From Antti Karttunen, Jul 07 & Jul 09 2017: (Start)
a(1) = 0; for n > 1, a(n) = A000005(n) - A010052(n) - 2.
For n >= 2, a(n) = A161840(n) - 2*A010052(n). (End)

Extensions

Description clarified and term a(0) removed by Antti Karttunen, Jul 09 2017