A200214 Ordered factorizations of n with 3 distinct parts, all > 1.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 6, 0, 6, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 6, 0, 6, 0, 0, 0, 18, 0, 0, 0, 6, 0, 6, 0, 0, 0, 6, 0, 18, 0, 0, 0, 0, 0, 6, 0, 12, 0, 0, 0, 18
Offset: 1
Keywords
Examples
a(24) = 6 = card({{2,3,4}, {2,4,3}, {3,2,4}, {3,4,2}, {4,2,3}, {4,3,2}}). a(64) = 6 = card({{2,4,8}, {2,8,4}, {4,2,8}, {4,8,2}, {8,2,4}, {8,4,2}}).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..1001
- Benny Chor, Paul Lemke, Ziv Mador, On the number of ordered factorizations of natural numbers, Discrete Mathematics, Vol. 214[1], 2000, p. 123-133.
- Arnold Knopfmacher and Michael Mays, Ordered and Unordered Factorizations of Integers, The Mathematica Journal, Vol 10 (1), 2006.
Programs
-
Mathematica
OrderedFactorizations[1] = {{}}; OrderedFactorizations[n_?PrimeQ] := {{n}}; OrderedFactorizations[n_] := OrderedFactorizations[n] = Flatten[Function[d, Prepend[#, d] & /@ OrderedFactorizations[n/d]] /@ Rest[Divisors[n]], 1]; a[n_] := With[{of3 = Sort /@ Select[OrderedFactorizations[n], Length[#] == 3 && Length[# // Union] == 3 &] // Union}, Length[Permutations /@ of3 // Flatten[#, 1] &]]; Table[a[n], {n, 1, 84}] (* Jean-François Alcover, Jul 02 2013, copied and adapted from The Mathematica Journal *)
-
PARI
A200214(n) = { my(s=0); fordiv(n, x, if((x>1)&&(x
A122180, still quite naive) - Antti Karttunen, Jul 09 2017
Formula
a(n) = 6*A122180(n). - Antti Karttunen, Jul 08 2017
Extensions
Description clarified, term a(0) removed and a second example added by Antti Karttunen, Jul 09 2017