A200219 Number of solutions of the equation x^n + (x+1)^n = (x+2)^n (mod n) for x = 0..n-1.
1, 1, 1, 2, 1, 2, 1, 4, 3, 2, 1, 4, 1, 2, 0, 8, 1, 6, 1, 4, 1, 2, 1, 8, 0, 2, 9, 2, 1, 4, 1, 16, 0, 2, 0, 12, 1, 2, 0, 8, 1, 4, 1, 2, 3, 2, 1, 16, 7, 10, 2, 2, 1, 18, 0, 8, 0, 2, 1, 8, 1, 2, 3, 32, 2, 4, 1, 4, 0, 2, 1, 24, 1, 2, 0, 4, 6, 4, 1, 16, 27, 2, 1, 8
Offset: 1
Keywords
Examples
a(6) = 2 because: for x = 3, 3^6 + 4^6 == 1(mod 6) and 5^6 == 1(mod 6). for x = 5, 5^6 + 6^6 == 1 (mod 6) and (7)^6 == 1 (mod 6).
Links
- Michel Lagneau, Table of n, a(n) for n = 1..1000
Programs
-
Maple
for n from 1 to 100 do:ii:=0:for x from 0 to n-1 do:if x^n+(x+1)^n -(x+2)^n mod n=0 then ii:=ii+1:else fi:od: printf(`%d, `,ii):od:
-
Mathematica
Array[Function[n,Count[Array[Mod[#^n+(#+1)^n-(#+2)^n,n]&,n,0],0]],84]
Comments