cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200219 Number of solutions of the equation x^n + (x+1)^n = (x+2)^n (mod n) for x = 0..n-1.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 4, 3, 2, 1, 4, 1, 2, 0, 8, 1, 6, 1, 4, 1, 2, 1, 8, 0, 2, 9, 2, 1, 4, 1, 16, 0, 2, 0, 12, 1, 2, 0, 8, 1, 4, 1, 2, 3, 2, 1, 16, 7, 10, 2, 2, 1, 18, 0, 8, 0, 2, 1, 8, 1, 2, 3, 32, 2, 4, 1, 4, 0, 2, 1, 24, 1, 2, 0, 4, 6, 4, 1, 16, 27, 2, 1, 8
Offset: 1

Views

Author

Michel Lagneau, Nov 14 2011

Keywords

Comments

a(n) = 0 for n = 15, 25, 33, 35, 39, 55, 57,… (see A200046).
a(n) = 1 if n prime.

Examples

			a(6) = 2 because:
for x = 3,  3^6 + 4^6 == 1(mod 6) and 5^6 == 1(mod 6).
for x = 5,  5^6 + 6^6 == 1 (mod 6) and (7)^6 == 1 (mod 6).
		

Crossrefs

Programs

  • Maple
    for n from 1 to 100 do:ii:=0:for x from 0 to n-1 do:if x^n+(x+1)^n -(x+2)^n mod n=0 then ii:=ii+1:else fi:od: printf(`%d, `,ii):od:
  • Mathematica
    Array[Function[n,Count[Array[Mod[#^n+(#+1)^n-(#+2)^n,n]&,n,0],0]],84]