cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200221 Ordered factorizations of n with 3 parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 3, 0, 3, 0, 3, 0, 0, 0, 9, 0, 0, 1, 3, 0, 6, 0, 6, 0, 0, 0, 12, 0, 0, 0, 9, 0, 6, 0, 3, 3, 0, 0, 18, 0, 3, 0, 3, 0, 9, 0, 9, 0, 0, 0, 21, 0, 0, 3, 10, 0, 6, 0, 3, 0, 6, 0, 27, 0, 0, 3, 3, 0, 6, 0, 18, 3, 0, 0, 21
Offset: 1

Views

Author

Peter Luschny, Nov 14 2011

Keywords

Examples

			a(24) = 9 = card({{4,3,2}, {4,2,3}, {3,4,2}, {3,2,4}, {2,4,3}, {2,3,4}, {6,2,2},{2,6,2}, {2,2,6}}).
		

References

  • Arnold Knopfmacher and Michael Mays, Ordered and Unordered Factorizations of Integers, The Mathematica Journal, Vol 10 (1).

Crossrefs

Cf. A200214.
Column k=3 of A251683.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; expand((`if`(isprime(n), 0,
          add(b(n/d), d=divisors(n) minus {1, n}))+1)*x)
        end:
    a:= n-> coeff(b(n), x, 3):
    seq(a(n), n=1..100);  # Alois P. Heinz, Dec 07 2014
  • Mathematica
    OrderedFactorizations[1] = {{}}; OrderedFactorizations[n_?PrimeQ] := {{n}}; OrderedFactorizations[n_] := OrderedFactorizations[n] = Flatten[Function[d, Prepend[#, d] & /@ OrderedFactorizations[n/d]] /@ Rest[Divisors[n]], 1]; a[n_] := With[{of3 = Sort /@ Select[OrderedFactorizations[n], Length[#] == 3 &] // Union}, Length[Permutations /@ of3 // Flatten[#, 1] &]]; Table[a[n], {n, 1, 84}] (* Jean-François Alcover, Jul 02 2013, copied and adapted from The Mathematica Journal *)
    nn = 200; f[list_, i_] := list[[i]]; a = Prepend[Table[1, {nn}], 0];
    c = Table[DirichletConvolve[f[a, n], f[a, n], n, m], {m, 1, nn}];
    Table[DirichletConvolve[f[a, n], f[c, n], n, m], {m, 1, nn}] (* Geoffrey Critzer, Apr 06 2020 *)

Formula

Dirichlet g.f.: (zeta(s)-1)^3. - Geoffrey Critzer, Apr 06 2020
Sum_{k=1..n} a(k) ~ n*(log(n)^2/2 + (3*gamma - 4)*log(n) + 3*gamma^2 - 9*gamma - 3*sg1 + 7), where gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Apr 07 2020