A200321 Irregular triangle T(n,k) where row n contains the maximal nodes in the graph of XOR connected primes of interval [2^n+1,2^(n+1)-1], n>=4.
17, 43, 59, 103, 139, 151, 157, 173, 193, 281, 457, 461, 463, 499, 607, 1409, 1451, 2143, 2657, 4229, 16063, 19583, 19699, 62143, 124981, 166303, 172663, 240257, 244301, 276041, 289853, 305411, 327319, 376639, 417941, 505663, 518761, 524119, 600703, 1056287
Offset: 4
Examples
The XOR connected graph for the interval [33,63], n=5, is 37 41 43 47 53 59 61 37 0 0 1 0 0 1 0 41 0 0 1 1 0 0 0 37 43 1 1 0 0 1 0 0 / \ 47 0 1 0 0 0 0 0 or 47~41~43 59~61 53 0 0 1 0 0 1 0 \ / 59 1 0 0 0 1 0 1 53 61 0 0 0 0 0 1 0 The maximum number of vertices connected to any prime is 3, therefore 43 and 59 are members of row n=5. Triangle begins: 17; 43, 59; 103; 139, 151, 157, 173, 193; 281, 457, 461, 463, 499; 607; 1409, 1451;
Crossrefs
Cf. A200143.
Programs
-
Maple
q:= (l, p, r)-> `if`(r-l=2, 0, `if`(isprime(l+r-p), 1, 0)+ `if`((l+r)/2>p, q(l, p, (l+r)/2), q((l+r)/2, p, r))): T:= proc(n) local r, l, u, p, m, d; r:= NULL; l:= 2^n; u:= 2*l; p:= nextprime(l); m:= -1; while p<=u do d:= q(l, p, u); if d=m then r:= r,p elif d>m then m:= d; r:= p fi; p:= nextprime(p) od; `if`(m>=3, r, NULL) end: seq(T(n), n=4..18); # Alois P. Heinz, Nov 16 2011
Extensions
More terms from Alois P. Heinz, Nov 16 2011
Comments