A200474 a(n) = floor(10*(prime(n+1)-prime(n))/log(prime(n))^2).
3, 6, 2, 4, 6, 1, 5, 3, 1, 2, 4, 3, 1, 3, 2, 1, 3, 2, 3, 3, 1, 0, 1, 0, 1, 6, 1, 2, 0, 4, 0, 2, 2, 1, 2, 2, 0, 3, 0, 1, 0, 4, 4, 1, 0, 1, 2, 0, 3, 1, 1, 1, 0, 1, 1, 0, 3, 4, 1, 0, 1, 4, 1, 2, 0, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 2, 0, 2, 0, 1, 1, 1, 2, 1, 0, 1, 3
Offset: 5
Keywords
Examples
a(9) = 6 because 10*(29-23)/log(23)^2 = 6.1029419977....
Links
- Arkadiusz Wesolowski, Table of n, a(n) for n = 5..10000
- Carlos Rivera, Conjecture 7. The Cramer's Conjecture, The Prime Puzzles and Problems Connection.
- Eric Weisstein's World of Mathematics, Cramer Conjecture
Programs
-
Mathematica
Table[Floor[10*(Prime[n + 1] - Prime[n])/Log[Prime[n]]^2], {n, 5, 100}]
Comments