A200536 Triangle, read by rows of 2*n+1 terms, where row n lists the coefficients in (1+3*x+2*x^2)^n.
1, 1, 3, 2, 1, 6, 13, 12, 4, 1, 9, 33, 63, 66, 36, 8, 1, 12, 62, 180, 321, 360, 248, 96, 16, 1, 15, 100, 390, 985, 1683, 1970, 1560, 800, 240, 32, 1, 18, 147, 720, 2355, 5418, 8989, 10836, 9420, 5760, 2352, 576, 64, 1, 21, 203, 1197, 4809, 13923, 29953, 48639, 59906, 55692, 38472, 19152, 6496, 1344, 128
Offset: 0
Examples
The triangle begins: 1; 1, 3, 2; 1, 6, 13, 12, 4; 1, 9, 33, 63, 66, 36, 8; 1, 12, 62, 180, 321, 360, 248, 96, 16; 1, 15, 100, 390, 985, 1683, 1970, 1560, 800, 240, 32; 1, 18, 147, 720, 2355, 5418, 8989, 10836, 9420, 5760, 2352, 576, 64; 1, 21, 203, 1197, 4809, 13923, 29953, 48639, 59906, 55692, 38472, 19152, 6496, 1344, 128; 1, 24, 268, 1848, 8806, 30744, 81340, 166344, 265729, 332688, 325360, 245952, 140896, 59136, 17152, 3072, 256; ... where row n equals the coefficients in (1+x)^n*(1+2*x)^n.
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..1295; Rows n = 0..35, flattened.
- We-jin Woan, The Lagrange Inversion formula and divisibility properties, JIS 10 (2007) 07.7.8, Example 3.
Crossrefs
Programs
-
PARI
{T(n,k)=polcoeff((1+3*x+2*x^2+x*O(x^k))^n,k)} {for(n=0,10,for(k=0,2*n,print1(T(n,k),","));print(""))}