cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200541 Product of Fibonacci and tribonacci numbers: a(n) = A000045(n+1)*A000073(n+2).

Original entry on oeis.org

1, 1, 4, 12, 35, 104, 312, 924, 2754, 8195, 24386, 72576, 215991, 642785, 1912960, 5693016, 16942573, 50421592, 150056090, 446571180, 1329008590, 3955167387, 11770690808, 35029911168, 104250013425, 310251009501, 923315841860, 2747814245904, 8177573467339, 24336691577000
Offset: 0

Views

Author

Paul D. Hanna, Nov 18 2011

Keywords

Comments

Limit a(n+1)/a(n) = (sqrt(5)+1)/2 * (1+(19+3*sqrt(33))^(1/3)+(19-3*sqrt(33))^(1/3))/3 = 2.9760284849940...

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 12*x^3 + 35*x^4 + 104*x^5 + 312*x^6 + 924*x^7 + 2754*x^8 +...+ A000045(n+1)*A000073(n+2)*x^n +...
where tribonacci numbers (A000073) begin:
[1,1,2,4,7,13,24,44,81,149,274,504,927,1705,3136,5768,10609,...],
and Fibonacci numbers (A000045) begin:
[1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,...].
		

Crossrefs

Programs

  • Mathematica
    Module[{nn=30,fs,ts},fs=Fibonacci[Range[nn]];ts=LinearRecurrence[{1,1,1},{1,1,2},nn];Times@@@Thread[{fs,ts}]] (* or *) LinearRecurrence[ {1,4,5,2,-1,1},{1,1,4,12,35,104},30] (* Harvey P. Dale, Dec 14 2016 *)
  • PARI
    {a(n)=polcoeff((1-x^2-x^3)/(1-x-4*x^2-5*x^3-2*x^4+x^5-x^6 +x*O(x^n)),n)}
    
  • PARI
    {A000073(n)=polcoeff(x^2/(1-x-x^2-x^3+x^3*O(x^n)),n)}
    {a(n)=fibonacci(n+1)*A000073(n+2)}

Formula

G.f.: (1 - x^2 - x^3) / (1 - x - 4*x^2 - 5*x^3 - 2*x^4 + x^5 - x^6).