A200544 Number of distinct bags of distinct sequences of 1s and 2s such that the sum of all terms is n.
1, 1, 3, 6, 14, 28, 61, 122, 253, 505, 1017, 2008, 3976, 7769, 15169, 29379, 56751, 108993, 208725, 397913, 756385, 1432578, 2705744, 5094749, 9568504, 17922756, 33492061, 62438472, 116151352, 215612548, 399451325, 738612472, 1363261171, 2511748010, 4620024202
Offset: 0
Keywords
Examples
For n = 4, a(4)=14 and the bags are: 1/1/1/1; 1/1/1,1; 1/1/2; 1/1,1,1; 1/1,2; 1/2,1; 1,1/1,1; 1,1/2; 2/1,1; 2/2; 1,1,1,1; 1,1,2; 1,2,1; 2,1,1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- W. S. Gray, K. Ebrahimi-Fard, Affine SISO Feedback Transformation Group and Its Faa di Bruno Hopf Algebra, arXiv:1411.0222 [math.OC], 2014.
- Vaclav Kotesovec, Asymptotics of the Euler transform of Fibonacci numbers, arXiv:1508.01796 [math.CO], Aug 07 2015
- Vaclav Kotesovec, Asymptotics of sequence A034691
- Sarah Nibs, C# code to generate sequence terms
- Wikipedia, Jenga
Programs
-
Maple
with(numtheory):with(combinat): a:= proc(n) option remember; `if`(n=0, 1, add(add(d* fibonacci(d+1), d=divisors(j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Nov 05 2013
-
Mathematica
CoefficientList[Series[Product[1/(1-x^k)^Fibonacci[k+1], {k, 1, 40}], {x, 0, 40}], x] (* Vaclav Kotesovec, Aug 05 2015 *)
-
SageMath
# uses[EulerTransform from A166861] a = BinaryRecurrenceSequence(1, 1, 1) b = EulerTransform(a) print([b(n) for n in range(35)]) # Peter Luschny, Nov 11 2020
Formula
sum{m1*a1+m2*a2+...+mk*ak}(prod{k}(binomial(A000045[ak + 1]+mk-1,mk))).
G.f.: Product_{s>=1}(sum{d>=0}(binomial(F(s+1)+d-1,d)*x^(d*s))). - Sarah Nibs, Oct 21 2013
Euler Transform of A000045 starting at index 2, i.e. EULER(1, 2, 3, 5, 8, 13, ...). - Sarah Nibs, Nov 05 2013
a(n) ~ phi^(n+1/4) / (2 * sqrt(Pi) * 5^(1/8) * n^(3/4)) * exp(phi/10 - 3/5 + 2*5^(-1/4)*sqrt(phi*n) + s), where s = Sum_{k>=2} (1+phi^k) / ((phi^(2*k) - phi^k - 1)*k) = 0.7902214013751085262994702391769374769675268259229550490716908... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 06 2015
a(n) = A337009(2*n,n). - Alois P. Heinz, Apr 30 2023
Extensions
Corrected terms from n=8 and onwards by Sarah Nibs, Oct 18 2013
C# program corrected and made much more efficient by Sarah Nibs, Oct 18 2013
Comments