cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A014145 Partial sums of A007489.

Original entry on oeis.org

0, 1, 4, 13, 46, 199, 1072, 6985, 53218, 462331, 4500244, 48454957, 571411270, 7321388383, 101249656696, 1502852293009, 23827244817322, 401839065437635, 7182224591785948, 135607710526966261, 2696935204638786574, 56349204870460046887, 1234002202313888987200
Offset: 0

Views

Author

Keywords

Examples

			a(4) = 1*4! + 2*3! + 3*2! + 4*1! = 46. - _Amarnath Murthy_, Sep 30 2003
		

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, n^2,
          (n+2)*a(n-1) -(2*n+1)*a(n-2) +n*a(n-3))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Jun 16 2017
  • Mathematica
    Join[{0},Nest[Accumulate[#]&,Range[20]!,2]] (* Harvey P. Dale, Aug 05 2015 *)

Formula

a(n) = Sum_{k=1..n} k*(n+1-k)!. - Amarnath Murthy, Sep 30 2003
a(n) = A200545(n+1,1). - Philippe Deléham, Nov 19 2011
a(n) = (n+2)*a(n-1) -(2*n+1)*a(n-2) +n*a(n-3) for n > 2, a(n) = n^2 for n < 3. - Alois P. Heinz, Jun 16 2017
a(n) ~ n! * (1 + 2/n + 3/n^2 + 7/n^3 + 20/n^4 + 67/n^5 + 255/n^6 + 1080/n^7 + 5017/n^8 + 25287/n^9 + 137122/n^10 + ...), for coefficients see A011968. - Vaclav Kotesovec, Mar 30 2018
Showing 1-1 of 1 results.