A200723 The sum of integers k from 1 to n such that the greatest common unitary divisor of k and n is 1.
1, 1, 3, 6, 10, 10, 21, 28, 36, 32, 55, 53, 78, 66, 69, 120, 136, 112, 171, 144, 153, 170, 253, 211, 300, 240, 351, 300, 406, 237, 465, 496, 384, 416, 445, 539, 666, 522, 558, 633, 820, 444, 903, 780, 772, 770, 1081, 887, 1176, 912, 951, 1104
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Reinhard Zumkeller)
- László Tóth, On the bi-unitary analogues of Euler's arithmetical function and the gcd-sum function J. Int. Seq. 12 (2009), Article 09.5.2.
Programs
-
Haskell
a200723 = sum . zipWith (*) [1..] . map a063524 . a165430_row -- Reinhard Zumkeller, Mar 04 2013
-
Maple
A200723 := proc(n) local a,k ; a := 0 ; for k from 1 to n do if A165430(k,n) = 1 then a := a+ k ; end if; end do; a ; end proc: seq(A200723(n),n=1..80) ;
-
Mathematica
T[n_, k_] := Module[{d = Divisors[GCD[n, k]]}, Max[Select[d, CoprimeQ[#, k/#] && CoprimeQ[#, n/#] &]]]; a[n_] := Sum[k * Boole[T[n, k] == 1], {k, 1, n}]; Array[a, 100] (* Amiram Eldar, May 23 2025 *)
-
PARI
udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); } a(n) = sum(k=1, n, if (vecmax(setintersect(udivs(n), udivs(k))) == 1, k)); \\ Michel Marcus, Jun 28 2023
Formula
a(6) = 1*1 + 4*1 +5*1 = 10 corresponding to the three 1's in row 6 of A165430.
Extensions
New name from Amiram Eldar, May 23 2025
Comments