A200725 G.f. A(x) satisfies A(x) = (1+x^2)*(1 + x*A(x)^3).
1, 1, 4, 16, 76, 399, 2206, 12664, 74790, 451420, 2772313, 17267652, 108821293, 692609446, 4445642625, 28744599748, 187047449289, 1224027357216, 8050074481917, 53179900898596, 352726704965748, 2348036826102013, 15682048658695168, 105052549830928908, 705678173069959645
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 4*x^2 + 16*x^3 + 76*x^4 + 399*x^5 + 2206*x^6 +... Related expansion: A(x)^3 = 1 + 3*x + 15*x^2 + 73*x^3 + 384*x^4 + 2133*x^5 + 12280*x^6 +... where a(3) = 1 + 15; a(4) = 3 + 73; a(5) = 15 + 384; a(6) = 73 + 2133; ... The logarithm of the g.f. A = A(x) equals the series: log(A(x)) = (1 + x/A^3)*x*A^2 + (1 + 2^2*x/A^3 + x^2/A^6)*x^2*A^4/2 + (1 + 3^2*x/A^3 + 3^2*x^2/A^6 + x^3/A^9)*x^3*A^6/3 + (1 + 4^2*x/A^3 + 6^2*x^2/A^6 + 4^2*x^3/A^9 + x^4/A^12)*x^4*A^8/4 + (1 + 5^2*x/A^3 + 10^2*x^2/A^6 + 10^2*x^3/A^9 + 5^2*x^4/A^12 + x^5/A^15)*x^5*A^10/5 + ... which involves the squares of the binomial coefficients C(n,k).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
nmax=20;aa=ConstantArray[0,nmax]; aa[[1]]=1;Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1+x^2)*(1+x*AGF^3)-AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}];Flatten[{1,aa}] (* Vaclav Kotesovec, Aug 19 2013 *)
-
PARI
{a(n)=local(p=2,q=-3,A=1+x);for(i=1,n,A=(1+x*A^(p+1))*(1+x^2*A^(p+q+1))+x*O(x^n));polcoeff(A,n)}
-
PARI
{a(n)=local(p=2,q=-3,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*sum(j=0,m,binomial(m, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
-
PARI
{a(n)=local(p=2,q=-3,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*(1-x*A^q)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
Formula
G.f. A(x) satisfies:
(1) A(x) = exp( Sum_{n>=1} x^n * A(x)^(2*n)/n * (Sum_{k=0..n} C(n,k)^2 * x^k / A(x)^(3*k)) ).
(2) A(x) = exp( Sum_{n>=1} x^n * A(x)^(2*n)/n * (1 - x/A(x)^3)^(2*n+1) * Sum_{k>=0} C(n+k,k)^2*x^k / A(x)^(3*k) ).
Recurrence: 2*(n-4)*(n-2)*n*(2*n+1)*a(n) = 3*(n-4)*(n-2)*(3*n-2)*(3*n-1)*a(n-1) - 2*(n-4)*(n-2)*n*(2*n-1)*a(n-2) + 6*(n-4)*(3*n-8)*(6*n^2 - 17*n + 2)*a(n-3) + 6*(3*n-14)*(9*n^3 - 66*n^2 + 114*n - 4)*a(n-5) + 6*n*(3*n-20)*(6*n^2 - 47*n + 78)*a(n-7) + 3*(n-2)*n*(3*n-26)*(3*n-19)*a(n-9). - Vaclav Kotesovec, Aug 19 2013
a(n) ~ c*d^n/n^(3/2), where d = 7.1535029565... is the root of the equation -27 - 81*d^2 - 81*d^4 - 27*d^6 + 4*d^7 = 0 and c = 0.26300783791885411389369671... - Vaclav Kotesovec, Aug 19 2013
a(n) = Sum_{k=0..floor(n/2)} binomial(3*n-6*k+1,k) * binomial(3*n-6*k+1,n-2*k)/(3*n-6*k+1). - Seiichi Manyama, Dec 17 2024
Comments