A200727 Number of partitions of n such that the number of parts is not divisible by the greatest part.
0, 1, 1, 3, 4, 8, 9, 16, 22, 33, 42, 61, 79, 110, 143, 192, 246, 325, 411, 535, 676, 865, 1081, 1371, 1704, 2136, 2642, 3283, 4035, 4979, 6082, 7453, 9067, 11043, 13365, 16197, 19516, 23531, 28239, 33894, 40513, 48425, 57667, 68661, 81497, 96679, 114370
Offset: 1
Keywords
Examples
The number of parts is not divisible by the greatest part: a(5) = 4: [1,2,2], [2,3], [1,4], [5]; a(6) = 8: [1,1,1,1,2], [2,2,2], [1,1,1,3], [3,3], [1,1,4], [2,4], [1,5], [6]. The greatest part is not divisible by the number of parts: a(5) = 4: [1,1,1,1,1], [1,1,1,2], [1,2,2], [2,3]; a(6) = 8: [1,1,1,1,1,1], [1,1,1,1,2], [1,1,2,2], [2,2,2], [1,1,1,3], [3,3], [1,1,4], [1,5].
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..500
Programs
-
Maple
b:= proc(n, j, t) option remember; add(b(n-i, i, t+1), i=j..iquo(n, 2))+ `if`(irem(t, n)>0, 1, 0) end: a:= n-> b(n, 1, 1): seq(a(n), n=1..50);
-
Mathematica
b[n_, j_, t_] := b[n, j, t] = Sum[b[n-i, i, t+1], {i, j, Quotient[n, 2]}] + If[Mod[t, n]>0, 1, 0]; a[n_] := b[n, 1, 1]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Feb 05 2017, translated from Maple *)
Comments