A200744 Divide integers 1..n into two sets, minimizing the difference of their products. This sequence is the larger product.
1, 2, 3, 6, 12, 30, 72, 210, 630, 1920, 6336, 22176, 79200, 295680, 1146600, 4586400, 18869760, 80061696, 348986880, 1560176640, 7148445696, 33530112000, 160825785120, 787718131200, 3938590656000, 20083261440000, 104351247000000, 552173794099200, 2973528918360000, 16286983961149440
Offset: 1
Keywords
Examples
For n=1, we put 1 in one set and the other is empty; with the standard convention for empty products, both products are 1. For n=13, the central pair of divisors of n! are 78975 and 78848. Since neither is divisible by 10, these values cannot be obtained. The next pair of divisors are 79200 = 12*11*10*6*5*2*1 and 78624 = 13*9*8*7*4*3, so a(13) = 79200.
Links
- Max Alekseyev, Table of n, a(n) for n = 1..140 (terms for n = 1..35 from Michael S. Branicky)
Programs
-
Maple
a:= proc(n) local l, ll, g, p, i; l:= [i$i=1..n]; ll:= [i!$i=1..n]; g:= proc(m, j, b) local mm, bb, k; if j=1 then m else mm:= m; bb:= b; for k to 2 while (mm
bb then bb:= max(bb, g(mm, j-1, bb)) fi; mm:= mm*l[j] od; bb fi end; Digits:= 700; p:= ceil(sqrt(ll[n])); ll[n]/ g(1, nops(l), 1) end: seq(a(n), n=1..23); # Alois P. Heinz, Nov 22 2011
-
Mathematica
a[n_] := a[n] = Module[{s, t}, {s, t} = MinimalBy[{#, Complement[Range[n], #]}& /@ Subsets[Range[n]], Abs[Times @@ #[[1]] - Times @@ #[[2]]]&][[1]]; Max[Times @@ s, Times @@ t]]; Table[Print[n, " ", a[n]]; a[n], {n, 1, 25}] (* Jean-François Alcover, Nov 07 2020 *)
-
Python
from math import prod, factorial from itertools import combinations def A200744(n): m = factorial(n) return min((abs((p:=prod(d))-m//p),max(p,m//p)) for l in range(n,n//2,-1) for d in combinations(range(1,n+1),l))[1] # Chai Wah Wu, Apr 07 2022
Formula
Extensions
a(24)-a(30) from Alois P. Heinz, Nov 22 2011